

VARSCENE: A Deep Generative Model for Realistic Scene Graph Synthesis

Tathagat Verma

Joint work with

Abir De, Yateesh Agrawal,
Vishwa Vinay and Soumen Chakrabarti

Supported by an Adobe Research grant

Our work

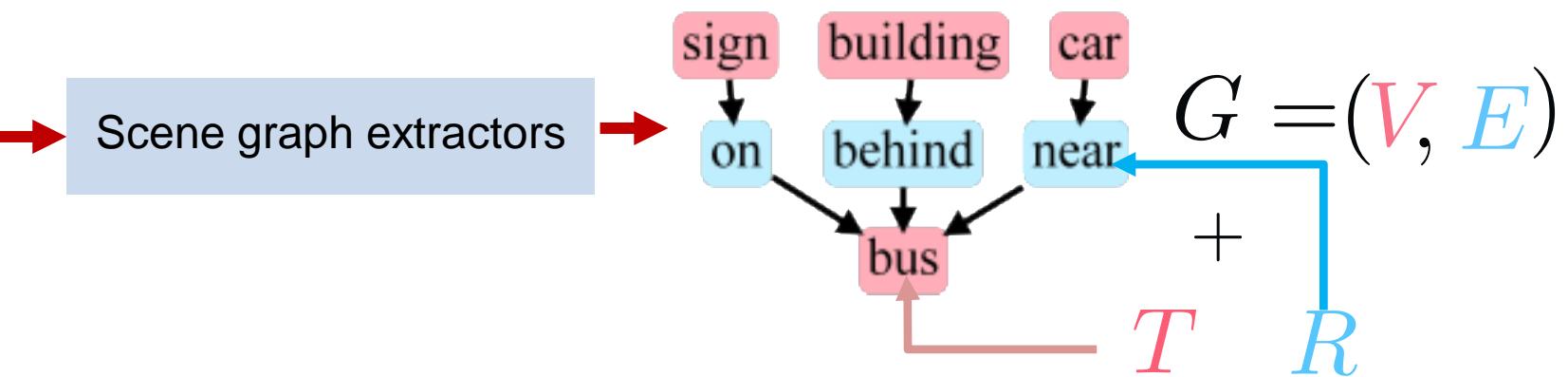
Generate scene graphs from scene graphs (not from images)

- Preserve semantic relationships between objects
- Wide spectrum of applications:
 - Structured query based Image retrieval (Schnoder et al 2020)
 - Image editing (Dhamo et al 2020)
 - Image captioning (Milewski et al 2020)

Our work

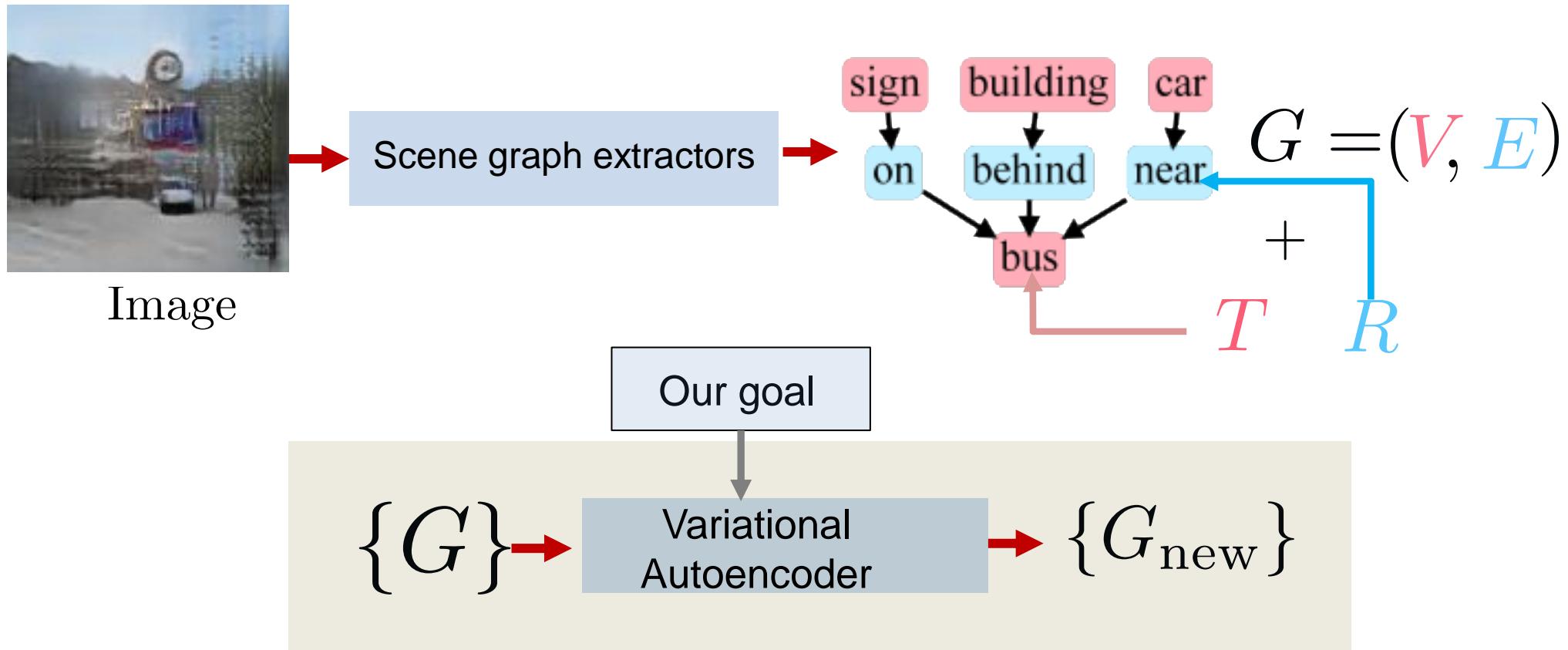
Generate from scene graphs instead of images

Image



Our work

Generate scene graphs instead of images

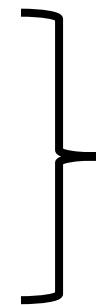


VarScene: A generative model for scene graphs

Encoder: Encode **stars around nodes** (instead of nodes) into representations

Decoder: **Generates stars** (instead of nodes/edges)

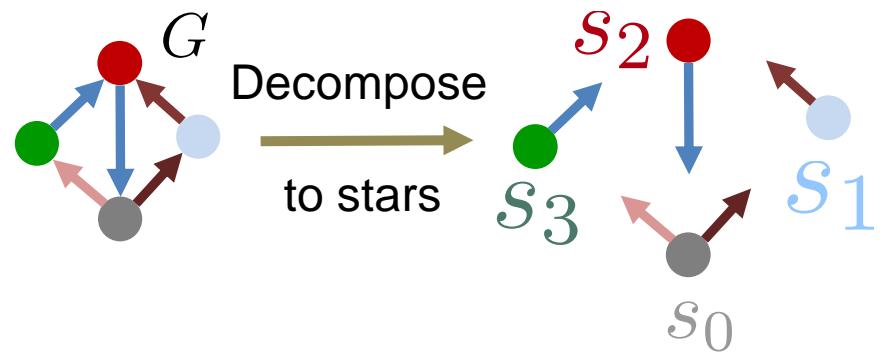
MMD optimized decoder: Final decoder is re-trained to mimic the true distribution



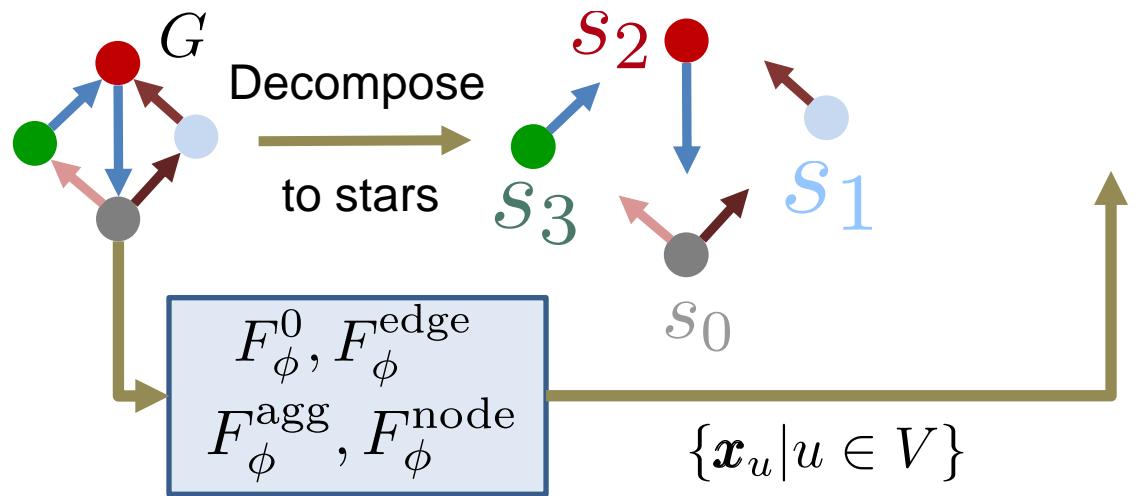
Maintains semantic relationship between nodes and edges

Enhanced generalization

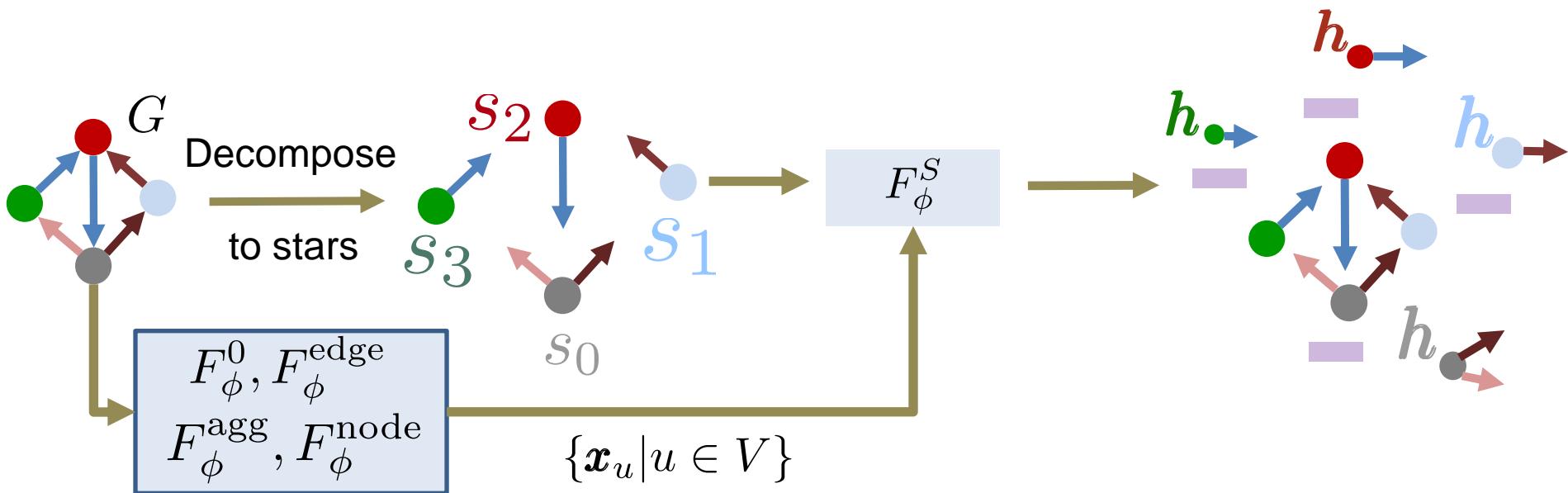
The probabilistic encoder



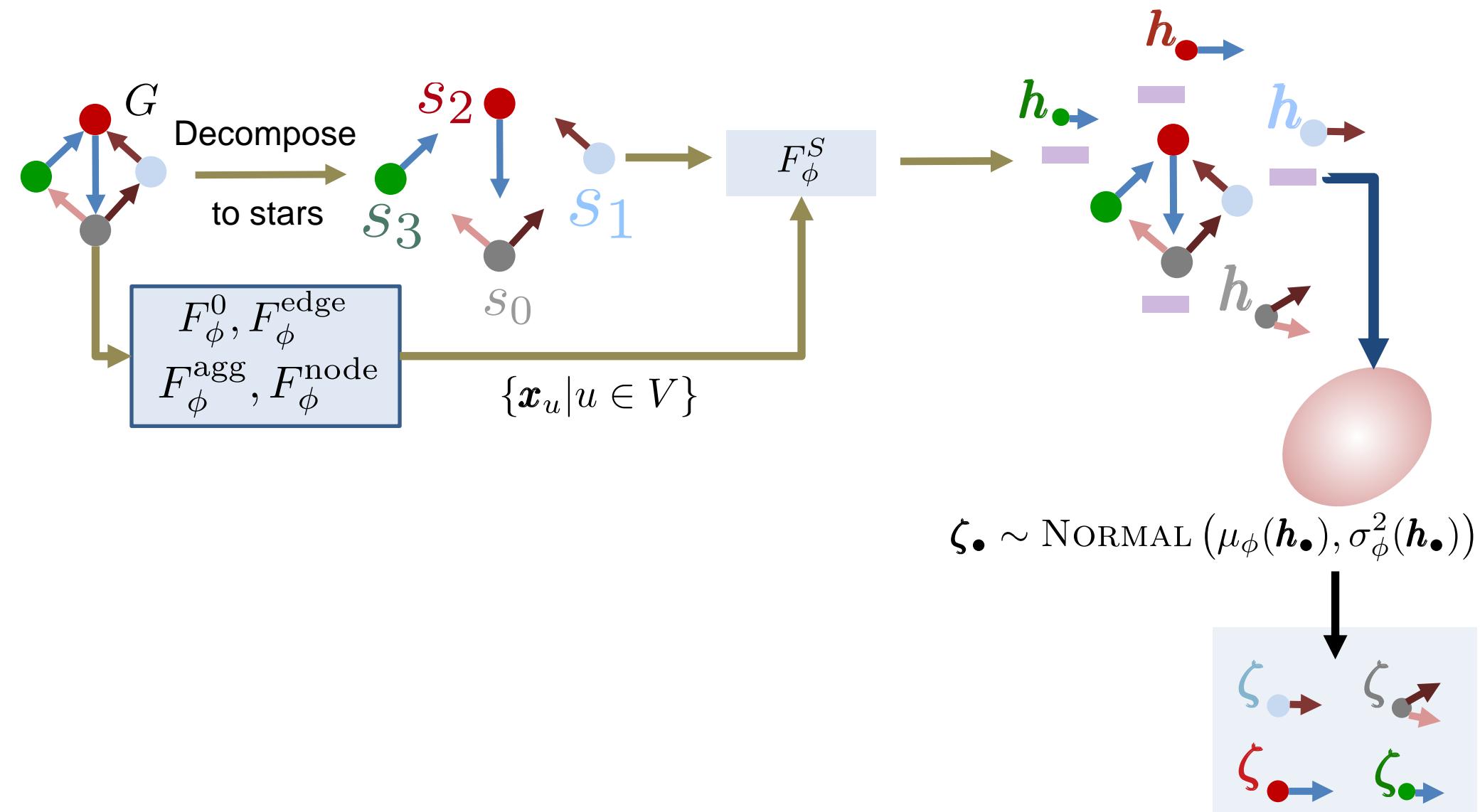
The probabilistic encoder



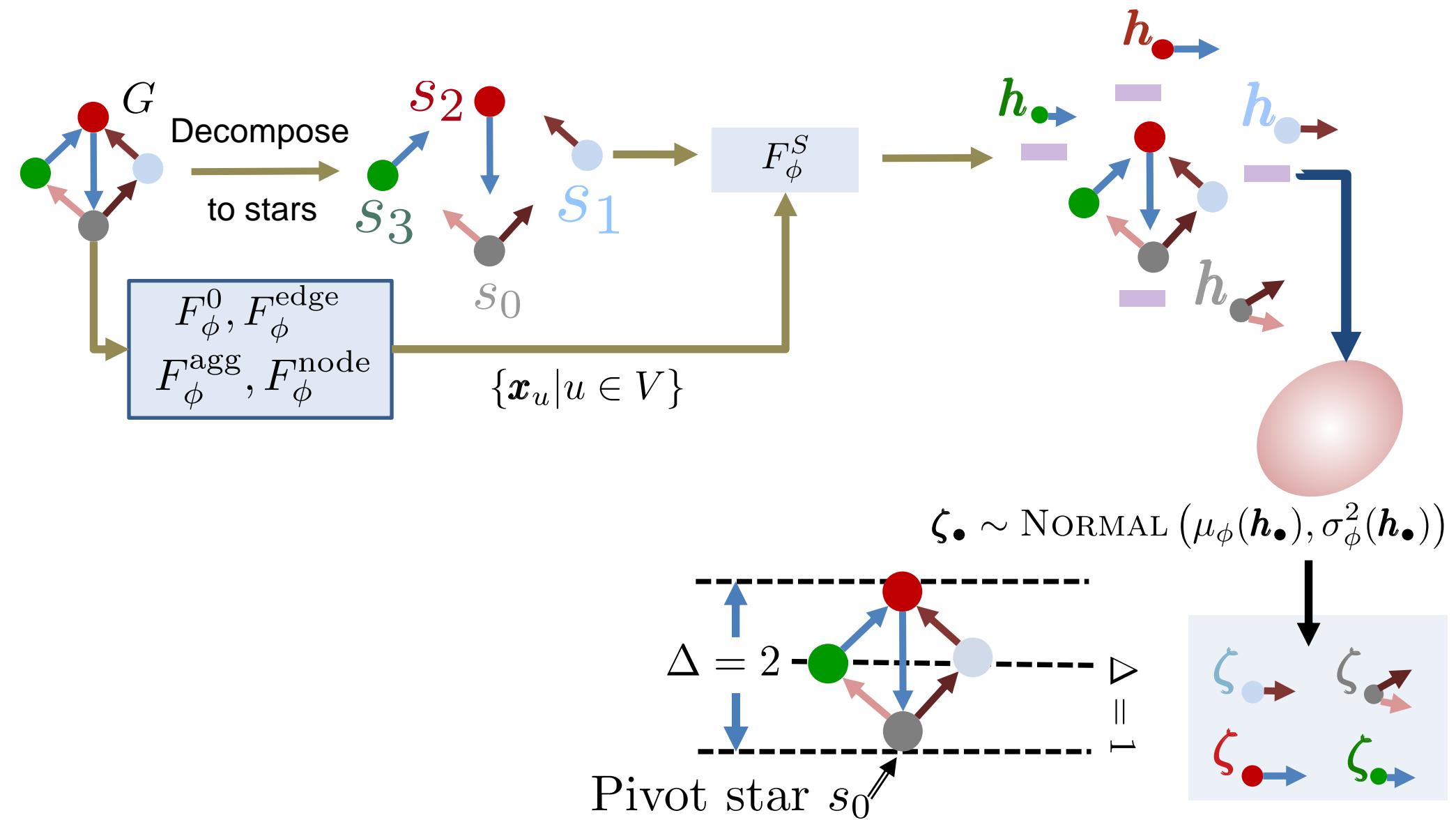
The probabilistic encoder



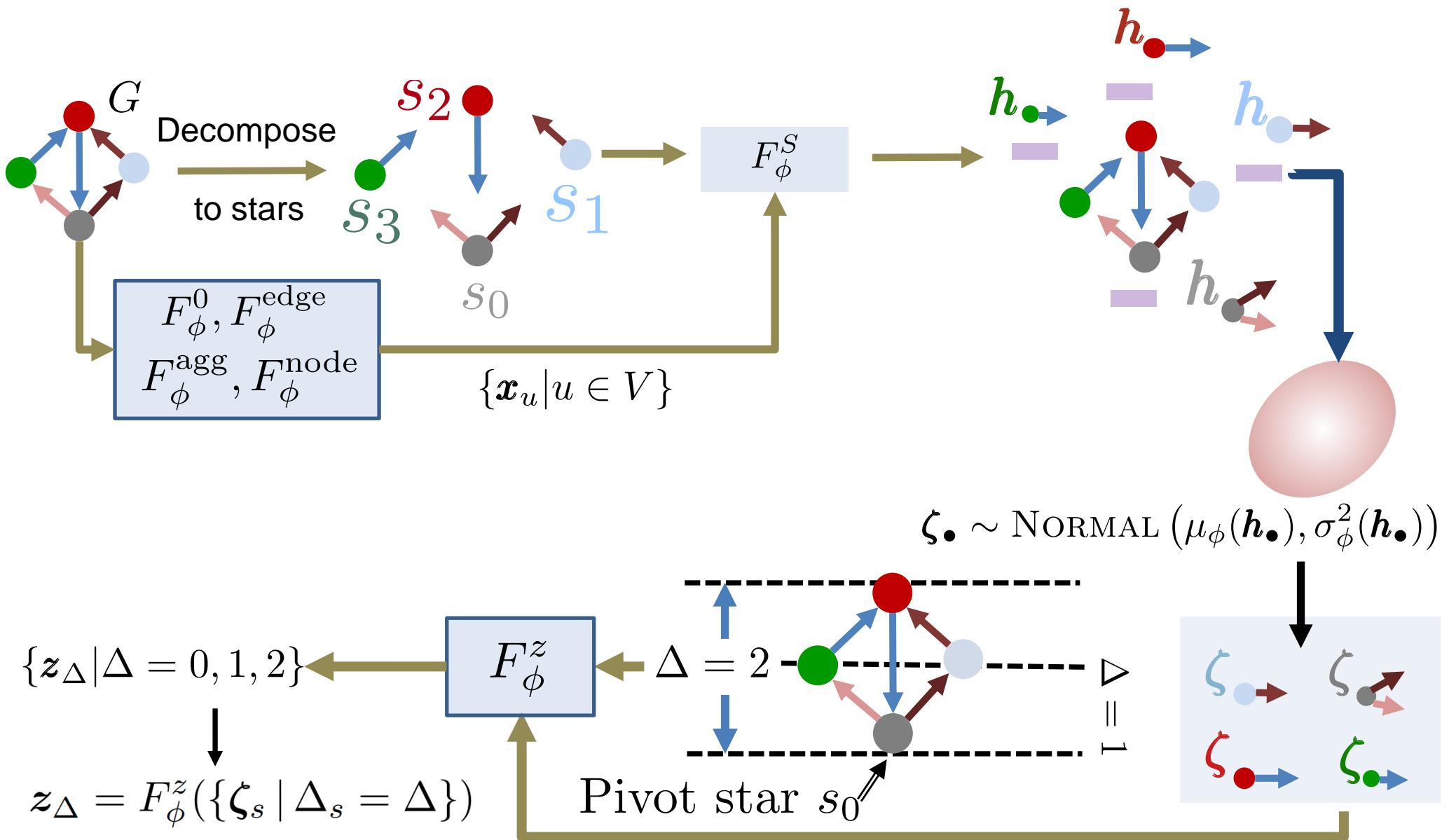
The probabilistic encoder



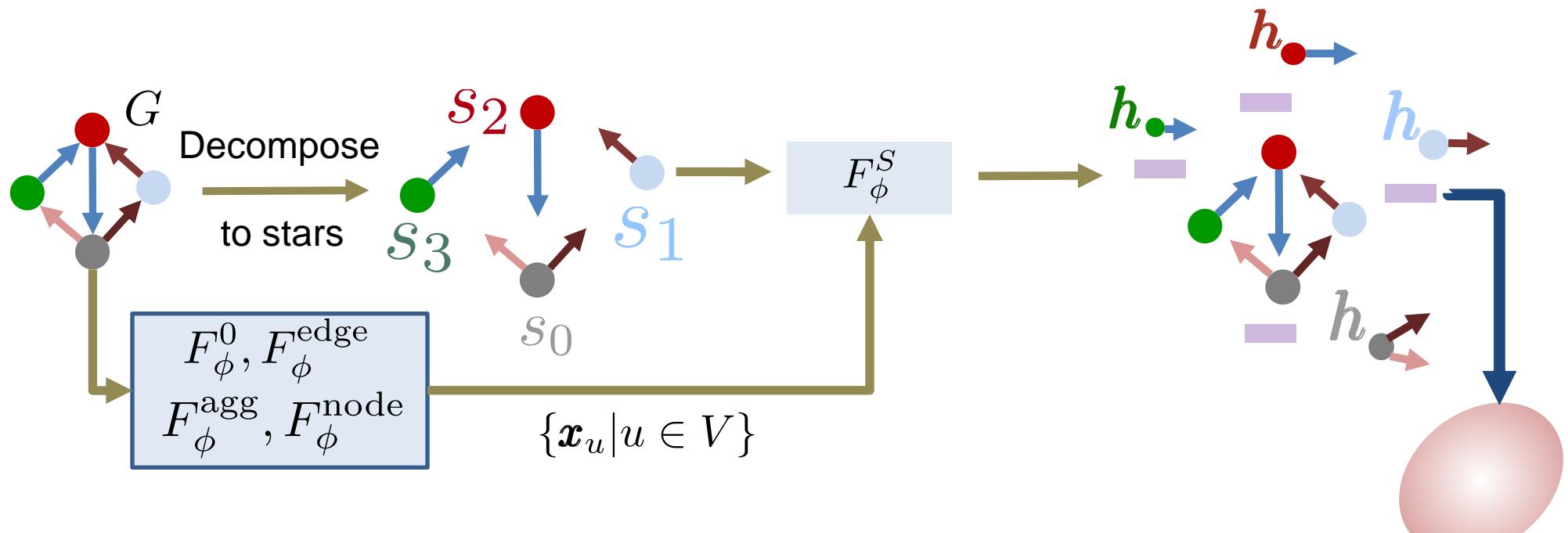
The probabilistic encoder



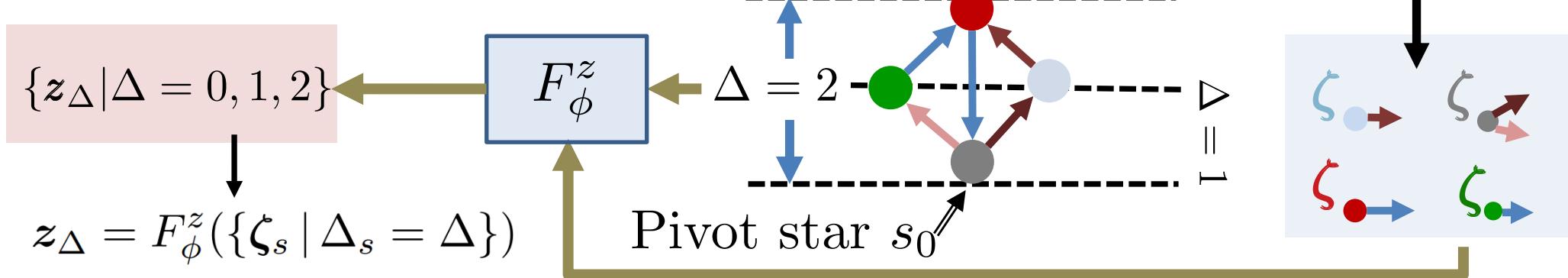
The probabilistic encoder



The probabilistic encoder



Our final representation
of the scene graphs



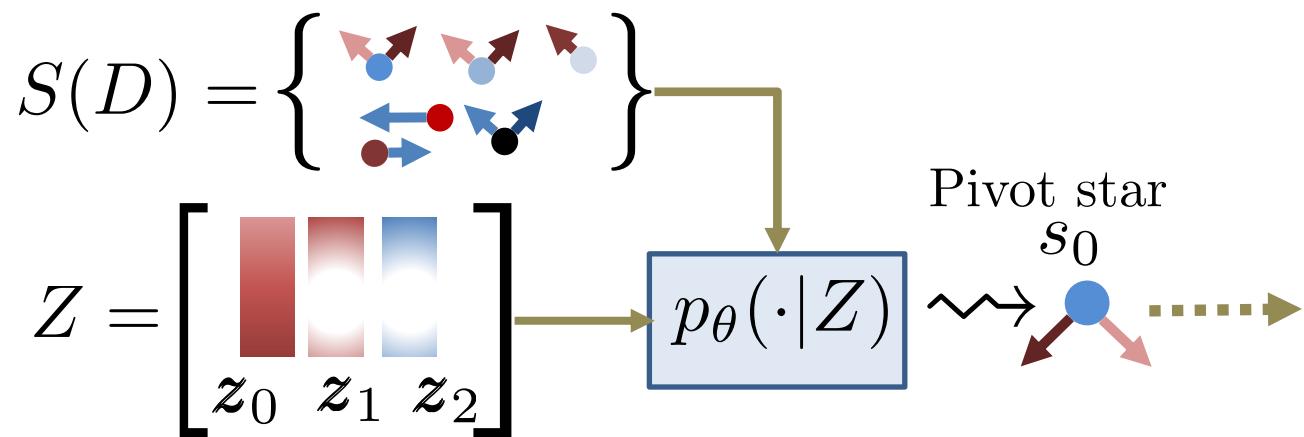
$$\zeta_\bullet \sim \text{NORMAL}(\mu_\phi(\mathbf{h}_\bullet), \sigma_\phi^2(\mathbf{h}_\bullet))$$

The probabilistic decoder

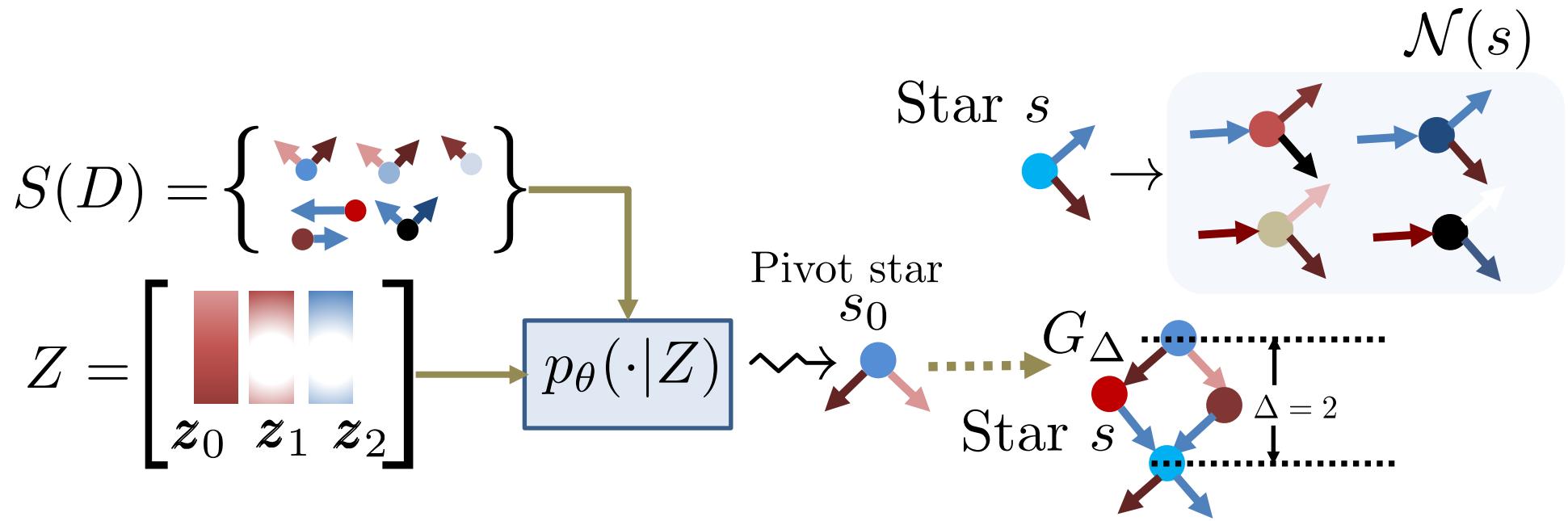
$$S(D) = \left\{ \begin{array}{c} \text{Diagram of a probabilistic graphical model node with three parents and three children, each with a directed edge.} \end{array} \right\}$$

$$Z = \begin{bmatrix} \text{Color swatch 1} & \text{Color swatch 2} & \text{Color swatch 3} \\ z_0 & z_1 & z_2 \end{bmatrix}$$

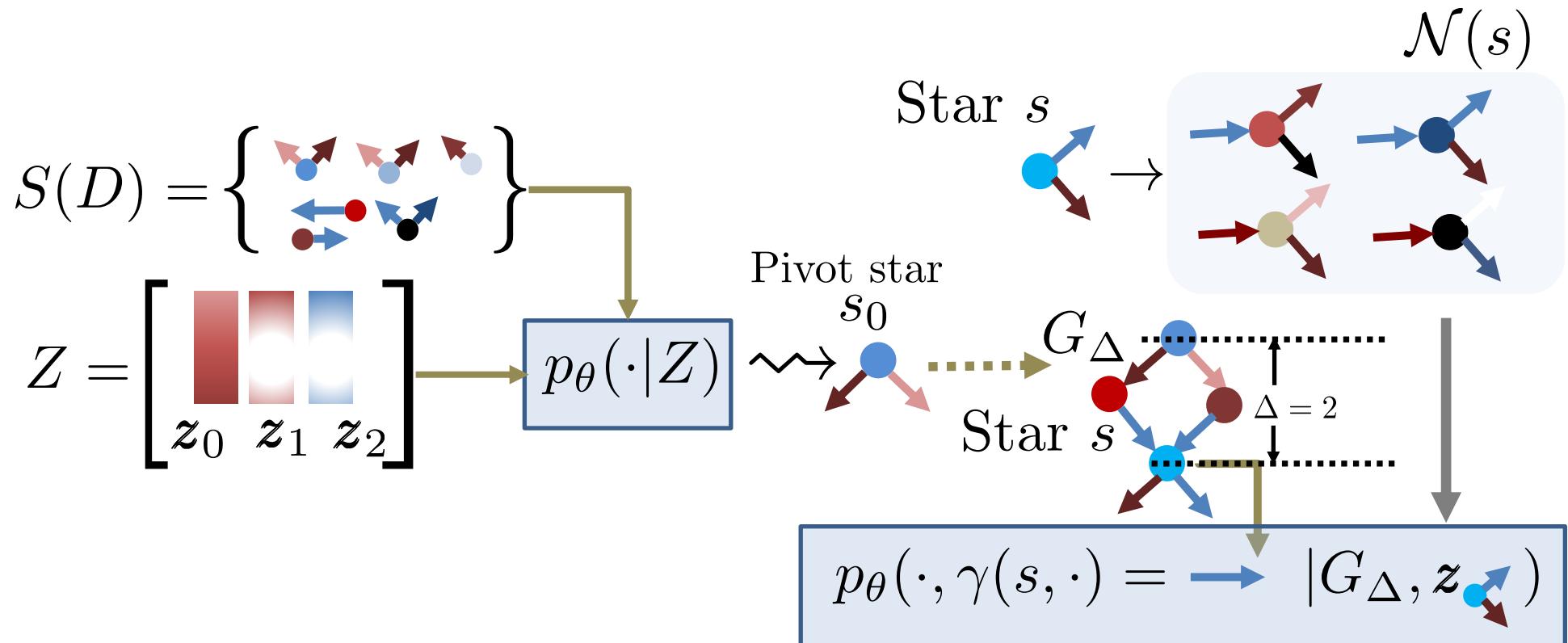
The probabilistic decoder



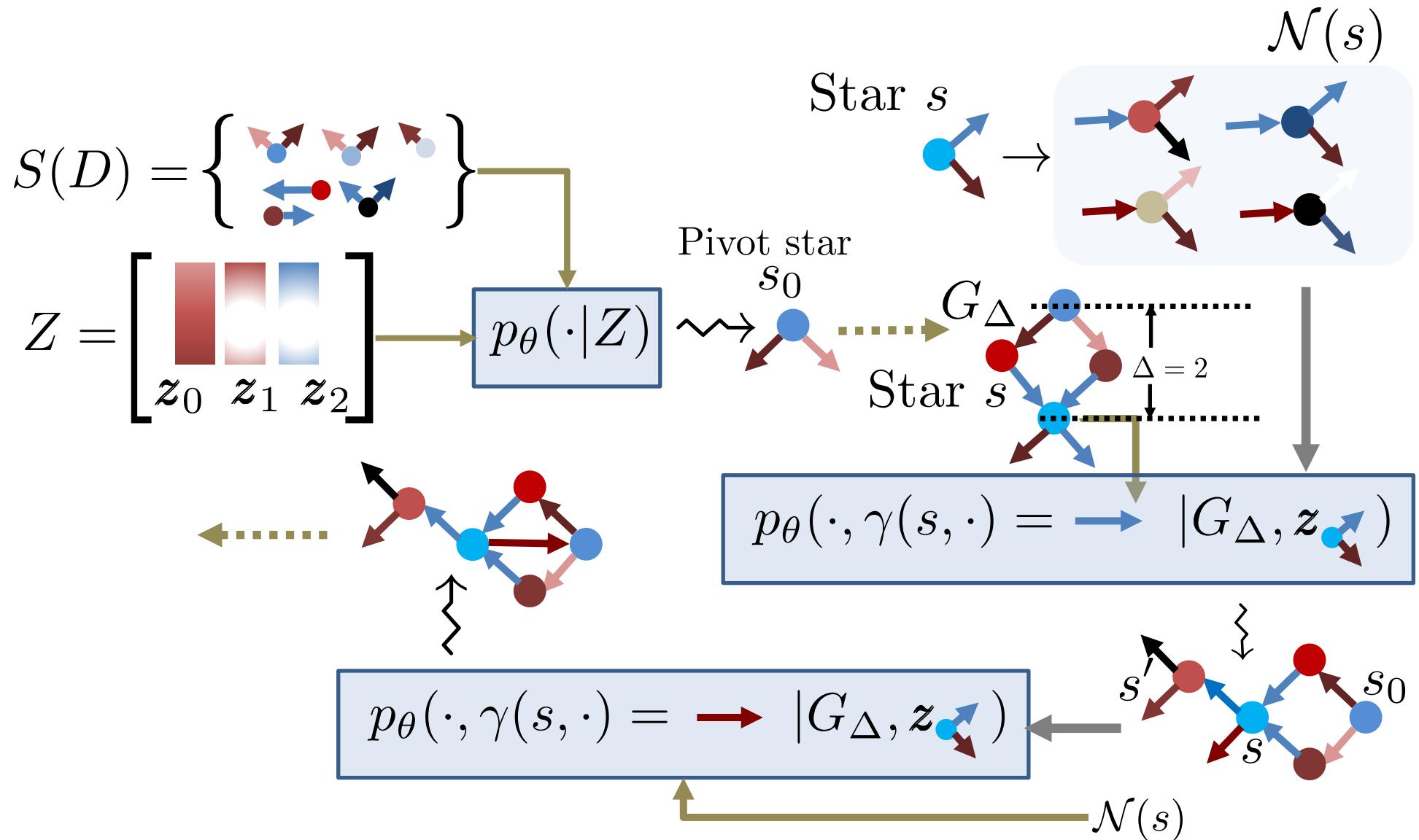
The probabilistic decoder



The probabilistic decoder



The probabilistic decoder



Training the VAE

Maximize ELBO

$$\max_{\phi, \theta} \sum_{G \in D} \left[\mathbb{E}_{Z \sim q_{\phi}(\cdot|G)} \left[\log p_{\theta}(G|Z) \right] + KL(q_{\phi}(Z|G) || p_0(Z)) \right]$$

Training the VAE

Maximize ELBO

$$\max_{\phi, \theta} \sum_{G \in D} \left[\mathbb{E}_{Z \sim q_{\phi}(\cdot|G)} \left[\log p_{\theta}(G|Z) \right] + KL(q_{\phi}(Z|G) || p_0(Z)) \right]$$

Approximate Posterior

Lower bound on the true objective

Training the VAE

Maximize ELBO

$$\max_{\phi, \theta} \sum_{G \in D} \left[\mathbb{E}_{Z \sim q_{\phi}(\cdot|G)} \left[\log p_{\theta}(G|Z) \right] + KL(q_{\phi}(Z|G) || p_0(Z)) \right]$$

Approximate Posterior

Lower bound on the true objective

Training is incognizant to underlying distribution

MMD optimized decoder design

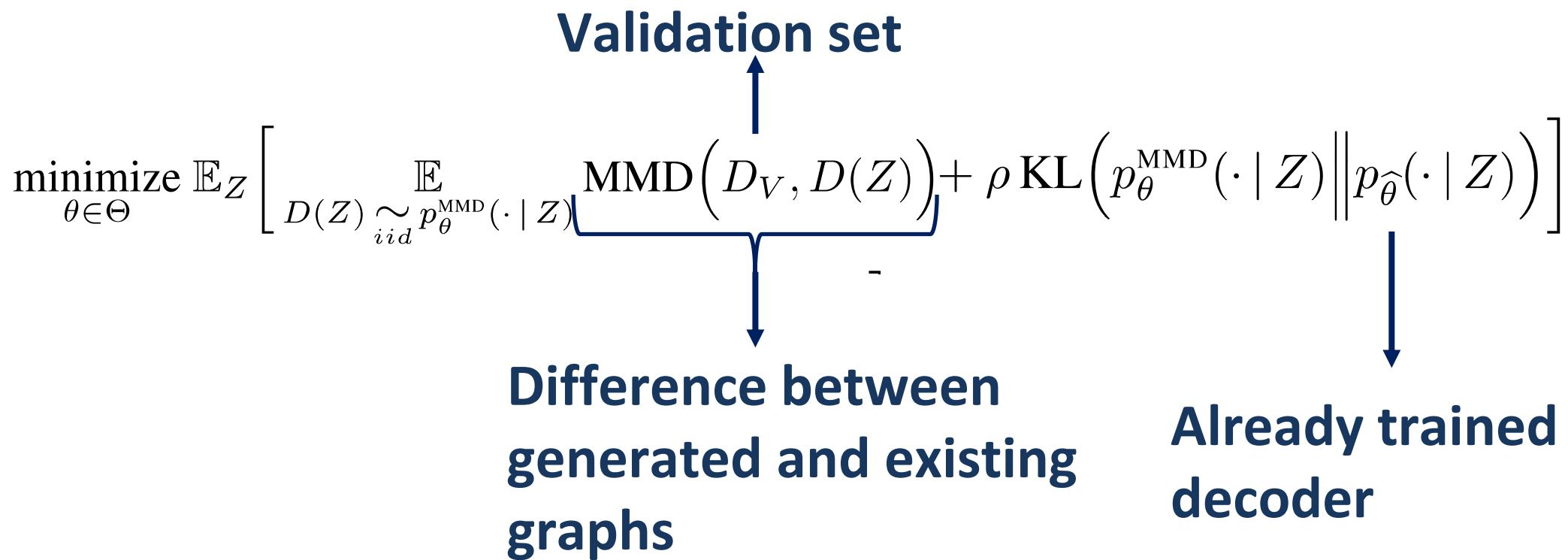
Re-train decoder using the **MMD** between
generated graphs and **validation graphs**

$$p_{\hat{\theta}} \xrightarrow{\text{re-train}} p_{\theta^{\text{MMD}}}$$

MMD optimized decoder design

Re-train decoder using the **MMD** between generated graphs and validation graphs

$$p_{\hat{\theta}} \xrightarrow{\text{re-train}} p_{\theta^{\text{MMD}}}$$



Experimental setup

We use three datasets: **Visual Genome (large and small)** and **Visual Relationship Detection** datasets.

Five baselines (Scene graph generators are rare in literature)

DeepGMG (Li et al. 2018)

MolGAN (De Cao et al. 2018)

GraphRNN (You et al. 2018)

GraphGen (Goyal et al. 2020)

SceneGen (Garg et al. 2021)

**Generic or molecular
graph generators**

Scene graph generator

Experimental setup

Reliable measures for evaluating generic graph generators are lacking.

In addition to Kernels, we also use cosine similarities between various quantities:

$$\cos \left(\mathbb{E}_{G' \sim p_{\theta}^{\text{MMD}}} \nu(G'), \mathbb{E}_{G \sim D_{\text{test}}} \nu(G) \right)$$

Number of different stars

Number of different edge-bigrams # $\langle r_{(\bullet, \underline{u})}, t_u, r_{(u, \bullet)} \rangle$

Number of different node-bigrams # $\langle t_u, r_{(u, v)}, t_v \rangle$

Experimental results

Model	Star-Sim	Edge-sim	Node-sim	SP-K	WL-K	NSPD-K
Visual Genome (VG)						
DeepGMG	0.69	0.46	0.15	0.01	<u>0.09</u>	0.01
MolGAN	0.00	0.00	0.00	0.00	<u>0.04</u>	0.01
GraphGen	0.66	0.37	0.11	0.00	0.03	0.01
GraphRNN	0.63	0.00	0.03	0.00	0.03	0.01
SceneGen	<u>0.73</u>	<u>0.50</u>	0.32	0.02	0.08	0.01
VARSCENE ^{unc}	0.59	0.45	<u>0.40</u>	0.22	0.11	0.01
VARSCENE ^{cond}	0.86	0.52	0.62	<u>0.08</u>	0.07	0.01

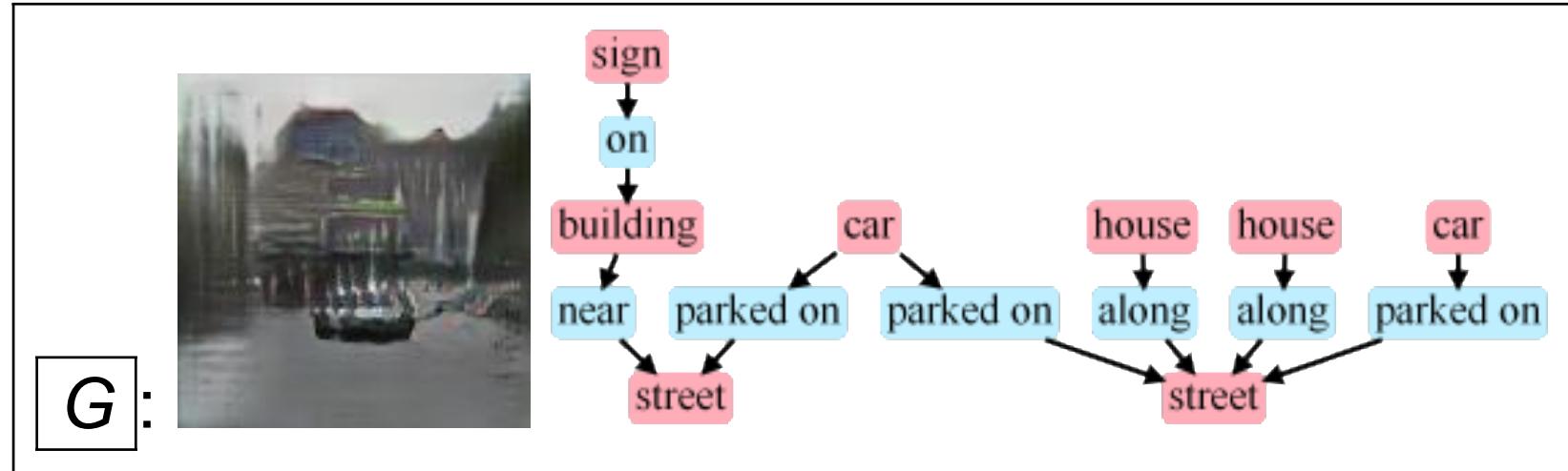
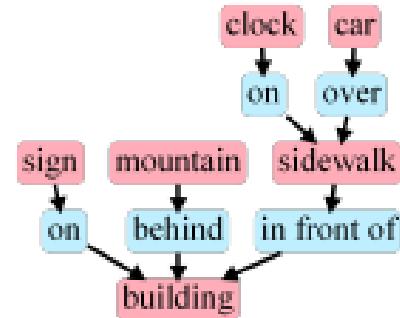
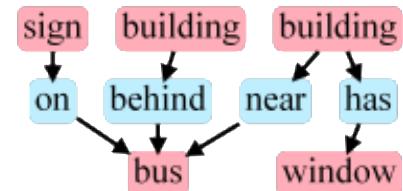
Experimental results

Visual Relationship Detection (VRD)						
Model	Star-Sim	Edge-sim	Node-sim	SP-K	WL-K	NSPD-K
DeepGMG	0.74	0.73	0.60	0.99	1.41	0.20
MolGAN	0.00	0.00	0.00	0.01	0.97	0.21
GraphGen	0.64	0.75	0.64	0.31	0.79	0.17
GraphRNN	0.54	0.29	0.71	0.21	0.76	0.18
SceneGen	<u>0.81</u>	0.94	0.95	0.60	1.12	0.21
VARSCENE ^{unc}	0.91	<u>0.93</u>	<u>0.94</u>	<u>1.03</u>	<u>1.56</u>	0.23
VARSCENE ^{cond}	0.91	<u>0.93</u>	0.93	1.45	1.92	<u>0.22</u>

Effect of MMD optimization

	VG		SVG		VRD	
	Star	Edge	Star	Edge	Star	Edge
p_{θ}^{MMD}	0.8660	0.5268	0.9182	0.6964	0.9140	0.9372
p_{θ}	0.5867	0.2588	0.7120	0.4195	0.8988	0.9339

Qualitative results



Conclusions

We have introduced a variational autoencoder (VAE) for scene graphs which, thanks to several technical innovations, beats the state of the art.

There are many interesting questions for **future work**:

1. Image editing after generating scene graphs
2. Controlling tradeoff between diversity and quality