Distributionally Robust Q-Learning

Zhengyuan Zhou (joint with)

Qinxun Bai, Jose Blanchet, Perry Dong, Zijian Liu, Wei Xu and Zhengqing Zhou

Reinforcement Learning

Real Environment Applications

Motivation

Fragile

Simulator discrepancy

How to be robust?

Environment shifts

How to be Robust?

A Distributionally Robust Approach

Problem

$$V^{\pi}(s) := \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} r(s_t, a_t) \,\middle|\, s_1 = s\right]$$

$$V_{\delta}^{\text{rob},\pi}(s) := \inf_{\mathbf{p} \in \mathcal{P}(\delta), \mathbf{r} \in \mathcal{R}(\delta)} \mathbb{E}_{\mathbf{p},\mathbf{r}} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r(s_t, a_t) \middle| s_1 = s \right]$$

$$V_{\delta}^{\mathrm{rob},*}(s) := \max_{\pi \in \Pi} V_{\delta}^{\mathrm{rob},\pi}(s), \quad \forall s \in \mathcal{S}$$

Recent Work

Distributionally robust contextual bandits:

Nian, Zhang, Zhou and Blanchet, ICML 2020

Model-based distributionally robust RL:

Zhou et al. AISTATS 2021

Yang et al. arXiv: 2105.03863.2021

Kishan and Kalathil, arXiv: 2112.01506, 2021

Kido, arXiv: 2205.04637, 2022

What about model-free distributionally robust learning algorithms?

Main Question

* Can we design a distributionally robust Q-Learning algorithm?

Come check us out:

Hall E # 932

Wed (today): 6:30pm – 8:30pm