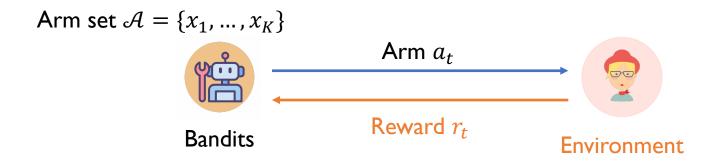
When Are Linear Stochastic Bandits Attackable?

Huazheng Wang, Haifeng Xu, Hongning Wang ICML 2022

Linear stochastic bandits

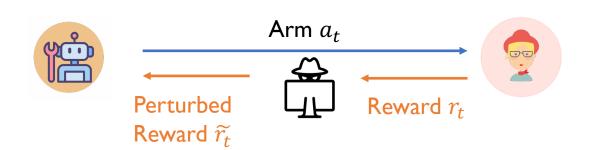


- Many real-world applications
 - Recommender system, advertisement, clinical trials, ...
- Linear reward assumption: $r_t = x_{a_t}^T \theta^* + \eta_t$
- Minimize Regret $R(T) = \sum_{t=1}^{T} (\mathbb{E}[r^*] \mathbb{E}[r_t])$
 - Equivalent to maximize the reward (rounds of pulling best arm)

Data poisoning attack

- Adversarial attack is a serious concern to ML systems
- Attacker $\widehat{\underline{\Gamma}}$: promote a target (suboptimal) arm \widehat{x} by feeding perturbed rewards \widehat{r}_t to the system
 - E.g., fake clicks, negative reviews to competitor's product
- Goal: fool the bandits to pull \tilde{x} linear times using sublinear cost

• Cost
$$C(T) = \sum_{t=1}^{T} |\widetilde{r_t} - r_t|$$



Attackability of a bandit environment

- Definition (informal): A bandit environment $\langle \mathcal{A}, \theta^* \rangle$ is attackable w.r.t. target arm \tilde{x} if for any no-regret algorithm, the exists an attack method fools the bandits to pull \tilde{x} T o(T) times using o(T) cost for any large enough T
- Attackability is the property of an environment, not algorithm-specific
- Any MAB environment is attackable [Liu & Shroff, 2019]
- When Are Linear Stochastic Bandits Attackable?

Characterization of attackability

• Result I: A bandit environment $\langle \mathcal{A}, \tilde{\chi}, \theta^* \rangle$ is attackable if and only if the following CQP's optimal objective $\epsilon^* > 0$

$$\max \ \epsilon \\ s.t. \ \tilde{x}^{\mathsf{T}}\theta_{\parallel}^{*} \geq \epsilon + x_{a}^{\mathsf{T}}(\theta_{\parallel}^{*} + \tilde{\theta}_{\perp}), \qquad \forall x_{a} \neq \tilde{x} \\ \tilde{x}^{\mathsf{T}}\tilde{\theta}_{\perp} = 0 \\ \|\theta_{\parallel}^{*} + \tilde{\theta}_{\perp}\|_{2} \leq 1$$

- Key idea: decrease non-target arms' rewards in the null space of \tilde{x} by $\tilde{\theta} = \theta_{\parallel}^* + \tilde{\theta}_{\perp}$ to make target arm the best
 - Increase target arm's reward requires linear cost [Feng et al., 2020]

Unattackable environment: an example

•
$$\theta^* = (1,1)$$

•
$$A = \{x_1 = (0, 1), x_2 = (1, 2)\}$$

• $r_1 = 1, r_2 = 3$

- Target arm $\tilde{x} = x_1$
- Attack according to $\tilde{\theta}=(-2,1)$

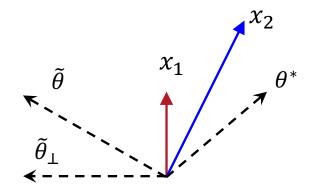
•
$$\tilde{r}_1 = 1, \tilde{r}_2 = -1$$

•
$$\theta^* = (1,1)$$

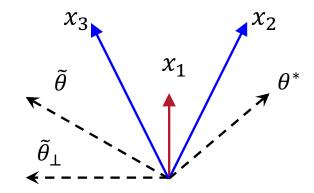
•
$$A = \{x_1 = (0, 1), x_2 = (1, 2), x_3 = (-1, 2)\}$$

• $r_1 = 1, r_2 = 3, r_3 = 1$

- Target arm $\tilde{x} = x_1$
- Attack according to $\tilde{\theta}=(?,1)$
 - Cannot find such $\tilde{\theta}$ to make x_1 the best



Insight of attackability: geometry (correlation) among arm features

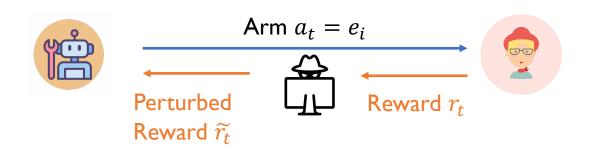


Attackability of MAB

• Since stochastic MAB is a special instance where $\mathcal{A} = \{e_1, \dots, e_K\}$, we have the following corollary:

For stochastic MAB, CQP is always feasible and the environment is always attackable for any target arm.

- Insight: reward estimates are independent for orthogonal arms
 - Attacker can arbitrarily decrease rewards of non-target arms
 - Recover similar attacks in [Jun et al., 2018 and Liu & Shroff, 2019] for MAB and [Garcelonet al., 2020] for k-armed linear contextual bandits



Oracle attack with known θ^*

• Following Theorem 1, we design Oracle Null Space Attack (with known θ^*) if environment is attackable

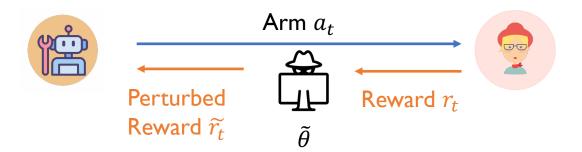
$$\widetilde{r_t} = x_{a_t}^{\mathsf{T}} \widetilde{\theta} + \eta_t$$
, where $\widetilde{\theta} = \theta_{\parallel}^* + \widetilde{\theta}_{\perp}$

• Any no-regret algorithm can be attacked with sublinear cost

• But in practice θ^* is unknown and can only be estimated online

Practical attack without knowing θ^*

- Two-stage Null Space Attack
 - First stage (T_1 rounds): collect rewards, estimate θ^*
 - Test attackability via CQP and compute $ilde{ heta}$
 - Second stage: attack non-target arms according to $ilde{ heta}$
 - Also compensate for rewards collected in the first stage



Practical attack without knowing θ^*

Two-stage Null Space Attack

- First stage (T_1 rounds): collect rewards, estimate θ^*
- Test attackability via CQP and compute $ilde{ heta}$
- Second stage: attack non-target arms according to $ilde{ heta}$
 - Also compensate for rewards collected in the first stage

• Result 2:

Target Algorithm	First stage rounds T ₁	Cost $C(T)$	Non-target arm pulls
LinUCB [Li et al., 2010, Abbasi-yadkori et al., 2011]	\sqrt{T}	$\tilde{O}(T^{\frac{3}{4}})$	$\tilde{O}(T^{\frac{3}{4}})$
Robust Phase Elimination [Bogunovic et al., 2021]	$T^{\frac{2}{5}}$	$\tilde{O}(T^{\frac{4}{5}})$	$\tilde{O}(T^{\frac{4}{5}})$

Thank you

Check our paper for details!

ICML 2022 / https://arxiv.org/abs/2110.09008