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Antibodies and binders

Designed binders to bind with 
specific viruses or receptors.

Shin, JE., Riesselman, A.J., Kollasch, 
A.W. et al. “Protein design and 
variant prediction using 
autoregressive generative models.” 
Nat Commun 12, 2403 (2021).

Cancer cell therapy

Cells with engineered receptors 
target and kill cancer cells.

Sockolosky, Jonathan T., et al. 
"Selective targeting of engineered T 
cells using orthogonal IL-2 cytokine- 
receptor complexes." Science 
359.6379 (2018): 1037-1042.

Gene editing

Engineered enzymes target and 
edit specific genetic sequences.

Thean, Dawn GL, et al. "Machine 
learning-coupled combinatorial 
mutagenesis enables resource- 
efficient engineering of CRISPR-Cas9 
genome editor activities." Nature 
Communications 13.1 (2022): 1-14.

Plastic degradation

PETase enzymes eat plastic by 
catalyzing chemical reactions.

Lu, Hongyuan, et al. "Machine 
learning-aided engineering of 
hydrolases for PET 
depolymerization." Nature 
604.7907 (2022): 662-667.

Exciting time for computational protein design and machine learning:
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Folding

Inverse folding

Protein amino acid sequence

Protein 3D structure



Billions of known protein sequences

Experimentally determined structures 
(~0.1% of sequence space)



Billions of known protein sequences

Experimentally determined structures 
(~0.1% of sequence space)

Our new data for training: 

12 million predicted structures from 
AlphaFold2 (Jumper et al., 2021)

~3 orders of magnitudes more





GVP-GNN
A rotation-invariant graph neural network with geometric 
vector perceptron (GVP) layers handling both scalar and 
vector features on nodes and edges (Jing et al., 2021).

GVP-Transformer
A more flexible architecture with GVP-GNN encoder 
layers to extract geometric features, followed by a generic 
autoregressive encoder-decoder Transformer.



AlphaFold2-predicted structures improves inverse folding 

Prior SOTA

New

Fixed backbone sequence design evaluation on the CATH v4.3 topology split test set.

New



The power of data scaling

On an existing model architecture class (Jing et al., 2021), simply 
scaling up the training data size by 750x from under 20,000 to 
12 million substantially improves the model, increasing sequence 
recovery rate (accuracy) from 42% to 51%.



Model scaling

While data scaling seems to keep improving the model 
performance up to 12 million predicted structures, model scaling 
hits a ceiling for a given data scale.



Wait.. Why would training on predicted structures help?



Wider sequence distribution

With the predicted structures, the model 
sees a much larger set of real UniRef50 
sequences, which allows the model to 
better capture the output distribution.

Evidence from contemporary work: 
Yang, Kevin K., Niccolò Zanichelli, and Hugh Yeh. 
"Masked inverse folding with sequence transfer for 
protein representation learning." bioRxiv (2022).

Knowledge distillation

AlphaFold2 is a more powerful model, 
especially with many recycling iterations. 
AlphaFold2 itself benefited from 
augmenting the training data with high 
confidence predicted structures for 
~350,000 Uniclust30 sequences.

Co-evolutionary information

When predicting structures, AlphaFold2 
makes use of co-evolutionary information 
in the form of multiple sequence 
alignments (MSAs), whereas inverse 
folding models do not make use of MSAs. 

Wait.. Why would training on predicted structures help?

Hypotheses:
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Caveat: training only on predicted structures does not work.



Expanding the set of structure-conditional protein design tasks:

Performance substantially 
improves when given the full 
complex backbone 
coordinates as input, versus 
only the single chain as input.

(Complexes in the CATH4.3 
topology split test set)

Conditioning sequence design 
on two conformations drives 
down sequence perplexity at 
flexible residues compared to 
using a single conformation.

(Structurally held-out proteins 
in the PDBFlex database)

Span masking during training 
improves the performance of 
the GVP-Transformer model 
on masked regions.

(Partially masked CATH4.3 
topology split test set)

Existing benchmark for 
inverse folding on 
structurally split proteins 
(Ingraham et al., 2019).



Inverse folding on partially 
masked structures

Both the more flexible GVP-Transformer architecture and span 
masking during training improve inverse folding performance on 
partially masked structures, although on longer mask regions all 
models suffer from degraded performance.

Perplexity on regions of masked coordinates of different lengths. 



Zero-shot tasks

Training with predicted structures improves 
inverse folding model performance on the 
following zero-shot prediction tasks:

Complex stability (SKEMPI database)

De novo protein stability (Rocklin et al., 2017)

SARS-CoV-2 RBD binding (Starr et al., 2020)

Sequence inversion effects on AAV virus 
packaging (Bryant et al., 2021)
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Protein 3D structure
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Prediction of mutational effects:

Variant sequences with higher conditional likelihoods are more 
likely to “fit” the given structure, e.g. implying higher stability.



Training with predicted 
structures improves 
inverse folding models.

In addition to the geometric inductive 
biases (which have been the major 
focus for existing work on inverse 
folding), finding ways to leverage more 
sources of training data is an equally 
important path to improved modeling 
capabilities.

Summary

Inverse folding as a 
pre-training task has 
diverse use cases. 

Inverse folding as a general training 
objective enables many downstream 
structure-conditional design tasks. 

By integrating span masking and using 
a sequence-to-sequence transformer, 
reasonable sequence predictions can 
be achieved for short masked spans.

GVP performs well on 
protein backbones at 
large model/data scales.

The geometric vector perceptron (Jing 
et al., 2021) is a scalable primitive for 
structural reasoning, although the 
GVP-GNN architecture has limitations 
with partially masked backbones.

Further structural reasoning might be 
achieved by additional supervision 
during training, e.g. with structural 
completion or structural generation as 
a joint objective.
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Try our open source code and Colab notebook for ESM-IF1: 
https://github.com/facebookresearch/esm


