

Streaming Algorithms for High-Dimensional Robust Statistics

Ankit Pensia

Ilias Diakonikolas

Daniel Kane

Thanasis Pittas

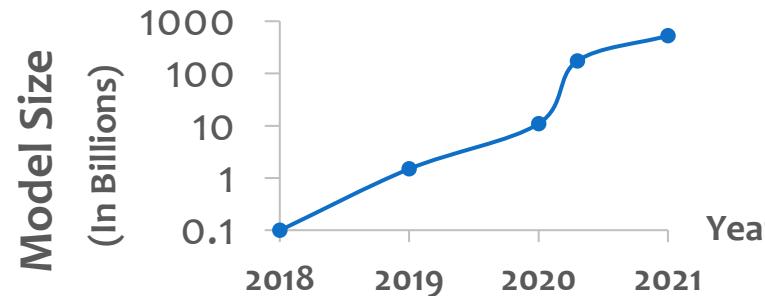
UC San Diego

Challenges in Modern Machine Learning

Challenges in Modern Machine Learning

Huge Models and Datasets

- Both number of samples and dimension

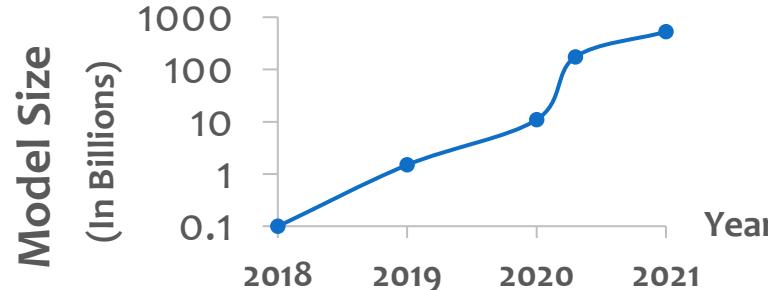


- Can't store the whole dataset in memory

Challenges in Modern Machine Learning

Huge Models and Datasets

- Both number of samples and dimension



- Can't store the whole dataset in memory

Corrupt Datasets

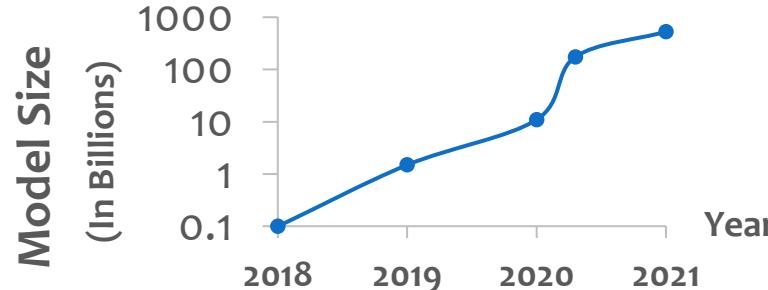
- A constant fraction of data may be corrupt:
 - Measurement errors
 - Adversarial corruption
- Need to use robust algorithms [DKKLMS16, LRV16]
- Current robust algs. store whole data in memory

[DKKLMS16] I. Diakonikolas, G. Kamath, D.M. Kane, J. Li, A. Moitra, A. Stewart. Robust Estimators in High Dimensions without the computational intractability. 2016.
[LRV16] K.A. Lai, A.B. Rao, S. Vempala. Agnostic Estimation of Mean and Covariance. 2016.

Challenges in Modern Machine Learning

Huge Models and Datasets

- Both number of samples and dimension



- Can't store the whole dataset in memory

Corrupt Datasets

- A constant fraction of data may be corrupt:
 - Measurement errors
 - Adversarial corruption
- Need to use robust algorithms [DKKLMS16, LRV16]
- Current robust algs. store whole data in memory

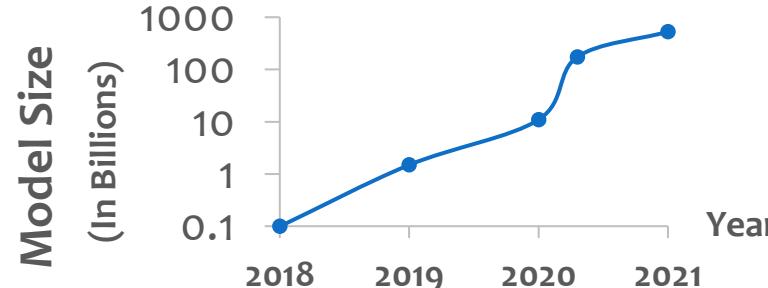
[DKKLMS16] I. Diakonikolas, G. Kamath, D.M. Kane, J. Li, A. Moitra, A. Stewart. Robust Estimators in High Dimensions without the computational intractability. 2016.

[LRV16] K.A. Lai, A.B. Rao, S. Vempala. Agnostic Estimation of Mean and Covariance. 2016.

Challenges in Modern Machine Learning

Huge Models and Datasets

- Both number of samples and dimension



- Can't store the whole dataset in memory

Corrupt Datasets

- A constant fraction of data may be corrupt:
 - Measurement errors
 - Adversarial corruption
- Need to use robust algorithms [DKKLMS16, LRV16]
- Current robust algs. store whole data in memory

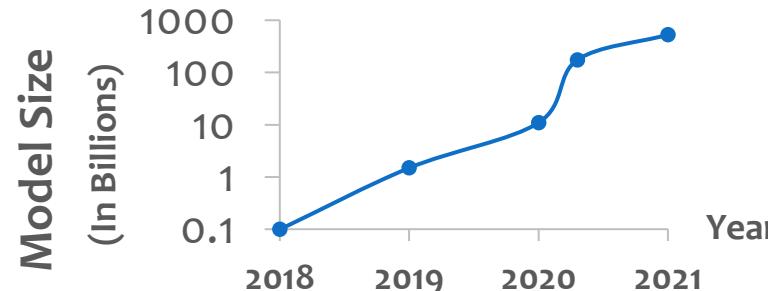
How do we handle this challenge?

[DKKLMS16] I. Diakonikolas, G. Kamath, D.M. Kane, J. Li, A. Moitra, A. Stewart. Robust Estimators in High Dimensions without the computational intractability. 2016.
[LRV16] K.A. Lai, A.B. Rao, S. Vempala. Agnostic Estimation of Mean and Covariance. 2016.

Challenges in Modern Machine Learning

Huge Models and Datasets

- Both number of samples and dimension



- Can't store the whole dataset in memory

Corrupt Datasets

- A constant fraction of data may be corrupt:
 - Measurement errors
 - Adversarial corruption
- Need to use robust algorithms [DKKLMS16, LRV16]
- Current robust algs. store whole data in memory

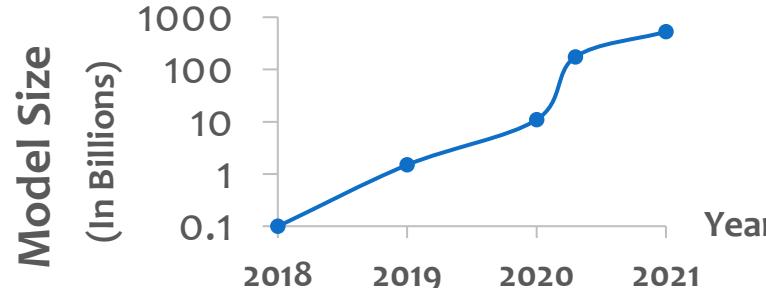
How do we handle this challenge?

[DKKLMS16] I. Diakonikolas, G. Kamath, D.M. Kane, J. Li, A. Moitra, A. Stewart. Robust Estimators in High Dimensions without the computational intractability. 2016.
[LRV16] K.A. Lai, A.B. Rao, S. Vempala. Agnostic Estimation of Mean and Covariance. 2016.

Challenges in Modern Machine Learning

Huge Models and Datasets

- Both number of samples and dimension



- Can't store the whole dataset in memory

Corrupt Datasets

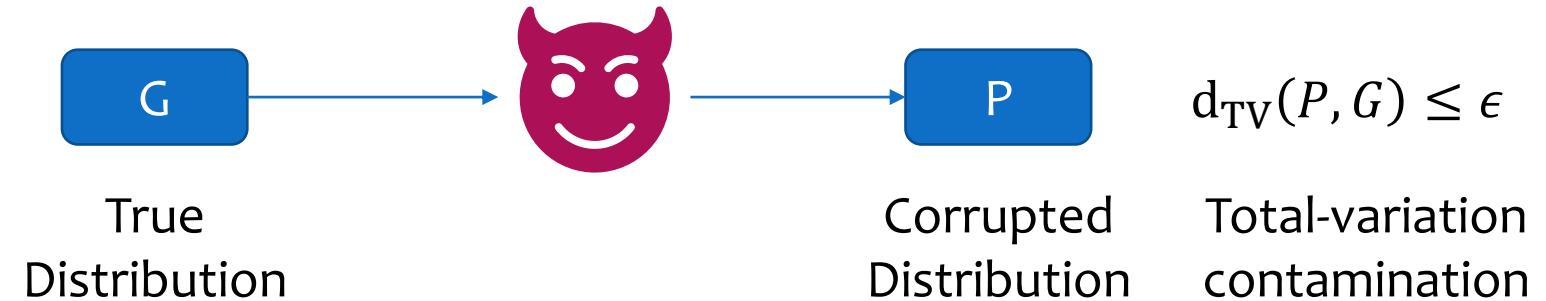
- A constant fraction of data may be corrupt:
 - Measurement errors
 - Adversarial corruption
- Need to use robust algorithms [DKKLMS16, LRV16]
- Current robust algs. store whole data in memory

How do we handle this challenge? Streaming

[DKKLMS16] I. Diakonikolas, G. Kamath, D.M. Kane, J. Li, A. Moitra, A. Stewart. Robust Estimators in High Dimensions without the computational intractability. 2016.
[LRV16] K.A. Lai, A.B. Rao, S. Vempala. Agnostic Estimation of Mean and Covariance. 2016.

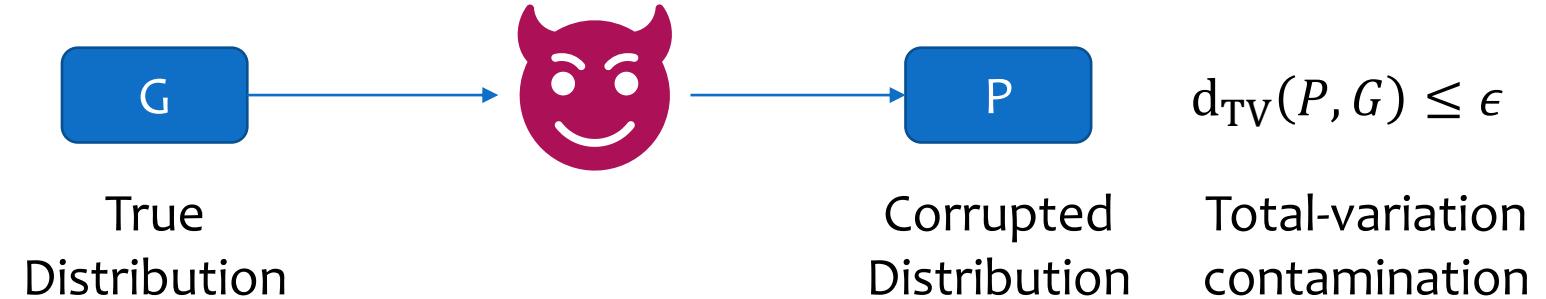
Problem Setup: Contamination & Streaming

**Data Contamination
Model**



Problem Setup: Contamination & Streaming

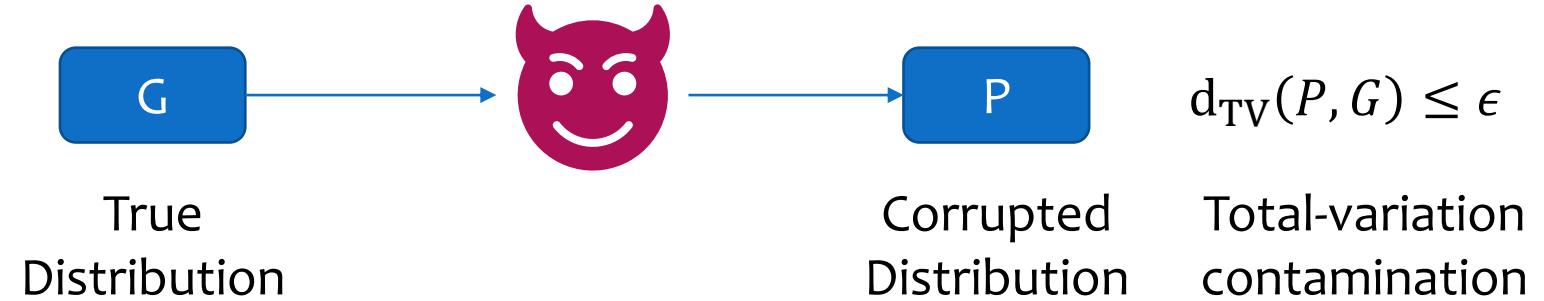
Data Contamination Model



Streaming Algorithm Model

Problem Setup: Contamination & Streaming

Data Contamination Model

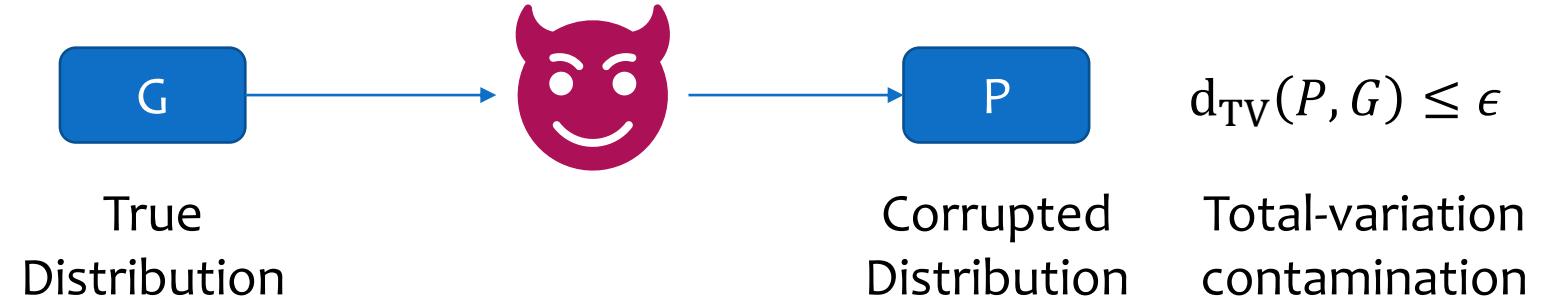


Streaming Algorithm Model

- Initialize memory state S

Problem Setup: Contamination & Streaming

Data Contamination Model

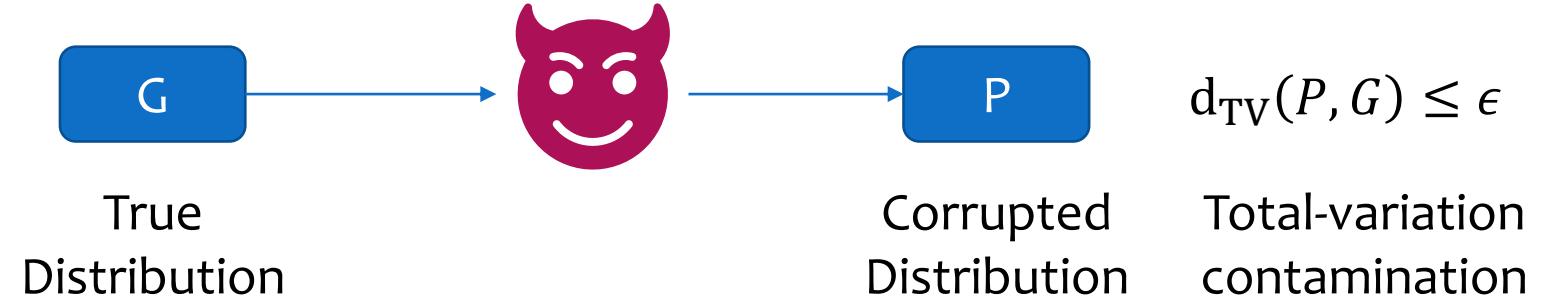


Streaming Algorithm Model

- Initialize memory state S
- For $i = 1, \dots, n$

Problem Setup: Contamination & Streaming

Data Contamination Model

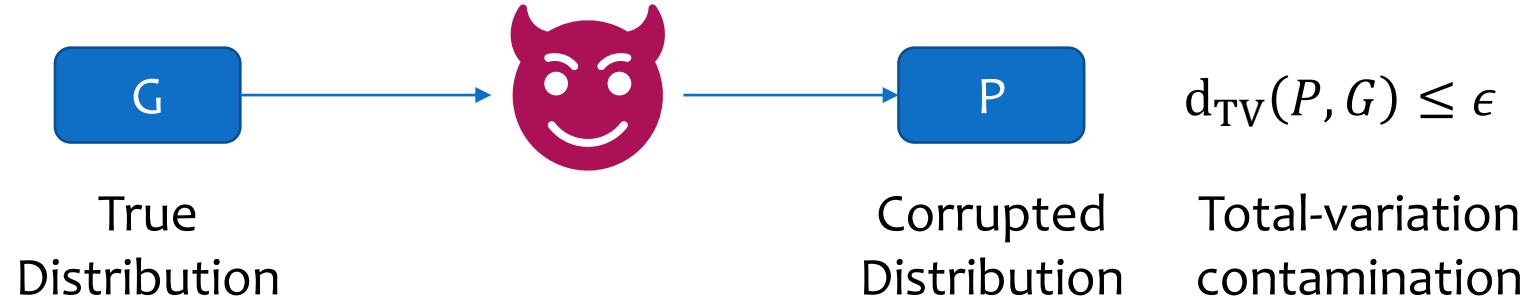


Streaming Algorithm Model

- Initialize memory state S
- For $i = 1, \dots, n$
 - Observe X_i from P
 - Update memory $S \leftarrow f(S, X_i, i)$

Problem Setup: Contamination & Streaming

Data Contamination Model

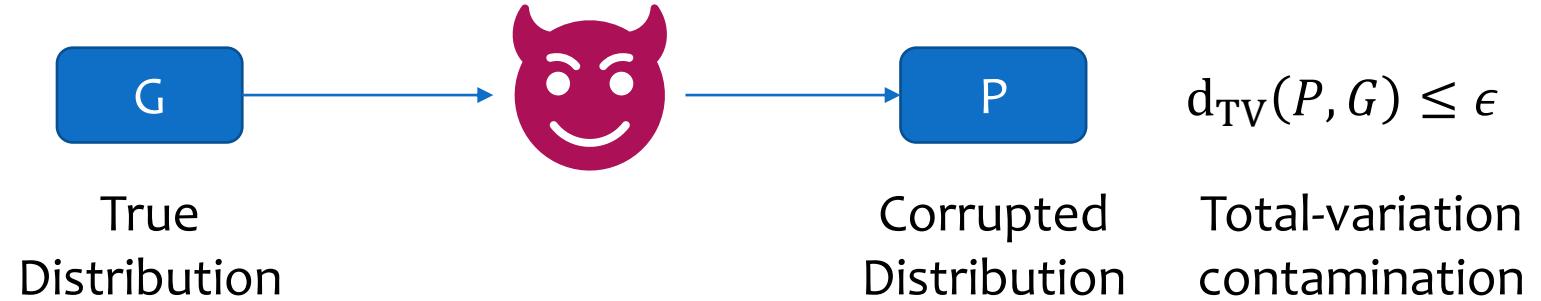


Streaming Algorithm Model

- Initialize memory state S
- For $i = 1, \dots, n$
 - Observe X_i from P
 - Update memory $S \leftarrow f(S, X_i, i)$
- Output $\hat{\theta}$ as a function of S

Problem Setup: Contamination & Streaming

Data Contamination Model



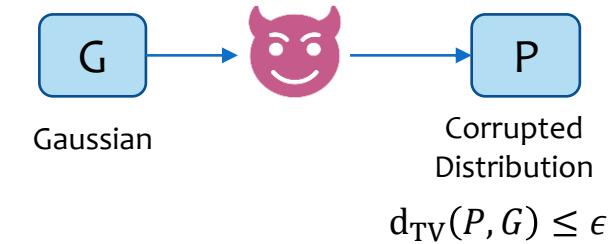
Streaming Algorithm Model

- Initialize memory state S
- For $i = 1, \dots, n$
 - Observe X_i from P
 - Update memory $S \leftarrow f(S, X_i, i)$
- Output $\hat{\theta}$ as a function of S

Goal: Design an algorithm that is robust, fast, and memory-efficient

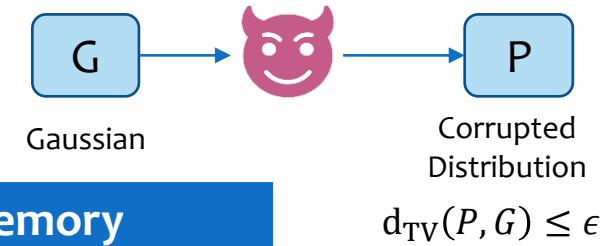
Task: Robust High-dimensional Mean Estimation

- Let $G = \mathcal{N}(\mu, I)$ be a Gaussian distribution in \mathbb{R}^d with unknown mean



Task: Robust High-dimensional Mean Estimation

- Let $G = \mathcal{N}(\mu, I)$ be a Gaussian distribution in \mathbb{R}^d with unknown mean



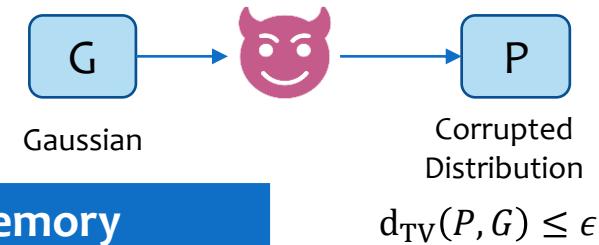
Known Polynomial-time Algorithms

Error Guarantee

Memory

Task: Robust High-dimensional Mean Estimation

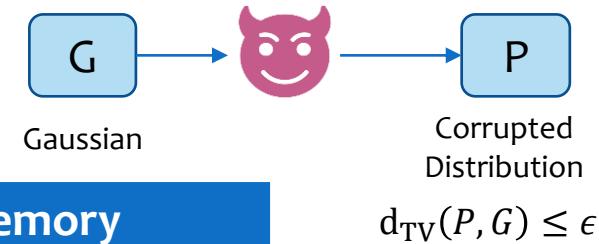
- Let $G = \mathcal{N}(\mu, I)$ be a Gaussian distribution in \mathbb{R}^d with unknown mean



Known Polynomial-time Algorithms	Error Guarantee	Memory
Naïve algorithms (clipping, random subspace, ...)	$\epsilon \cdot \text{poly}(d)$	$\tilde{O}(d)$

Task: Robust High-dimensional Mean Estimation

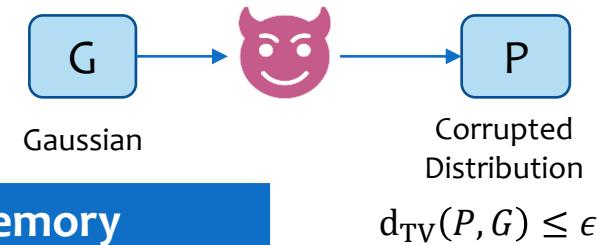
- Let $G = \mathcal{N}(\mu, I)$ be a Gaussian distribution in \mathbb{R}^d with unknown mean



Known Polynomial-time Algorithms	Error Guarantee	Memory
Naïve algorithms (clipping, random subspace, ...)	$\epsilon \cdot \text{poly}(d)$	$\tilde{O}(d)$
Existing robust algorithms (filtering, convex programming, gradient descent)	$\tilde{O}(\epsilon)$	$\frac{d^2}{\epsilon^2}$

Task: Robust High-dimensional Mean Estimation

- Let $G = \mathcal{N}(\mu, I)$ be a Gaussian distribution in \mathbb{R}^d with unknown mean



Known Polynomial-time Algorithms	Error Guarantee	Memory
Naïve algorithms (clipping, random subspace, ...)	$\epsilon \cdot \text{poly}(d)$	$\tilde{O}(d)$
Existing robust algorithms (filtering, convex programming, gradient descent)	$\tilde{O}(\epsilon)$	$\frac{d^2}{\epsilon^2}$

Is there an efficient algorithm that has error $\tilde{O}(\epsilon)$ and uses memory $\tilde{O}(d)$?

Our Results: Robust Mean Estimation

Efficient Algorithms	Error	Memory
Naïve algs.	$\epsilon \cdot \text{poly}(d)$	d
Existing robust algs.	ϵ	$\frac{d^2}{\epsilon^2}$
This paper	ϵ	d

Theorem [DKPP22] Let P be an ϵ -corruption of $\mathcal{N}(\mu, I)$. Given $\text{poly}\left(d, \frac{1}{\epsilon}\right)$ i.i.d. samples from P in the streaming model, there is a nearly-linear time algorithm to compute $\hat{\mu}$ such that w.h.p.

- (i) Memory usage = $\tilde{O}(d)$ and
- (ii) $\|\hat{\mu} - \mu\|_2 = \tilde{O}(\epsilon)$

Our Results: Robust Mean Estimation

Efficient Algorithms	Error	Memory
Naïve algs.	$\epsilon \cdot \text{poly}(d)$	d
Existing robust algs.	ϵ	$\frac{d^2}{\epsilon^2}$
This paper	ϵ	d

Theorem [DKPP22] Let P be an ϵ -corruption of $\mathcal{N}(\mu, I)$. Given $\text{poly}\left(d, \frac{1}{\epsilon}\right)$ i.i.d. samples from P in the streaming model, there is a nearly-linear time algorithm to compute $\hat{\mu}$ such that w.h.p.

$$(i) \text{ Memory usage} = \tilde{O}(d) \quad \text{and} \quad (ii) \quad \|\hat{\mu} - \mu\|_2 = \tilde{O}(\epsilon)$$

- Near-optimal error even with infinite samples and memory

Our Results: Robust Mean Estimation

Efficient Algorithms	Error	Memory
Naïve algs.	$\epsilon \cdot \text{poly}(d)$	d
Existing robust algs.	ϵ	$\frac{d^2}{\epsilon^2}$
This paper	ϵ	d

Theorem [DKPP22] Let P be an ϵ -corruption of $\mathcal{N}(\mu, I)$. Given $\text{poly}\left(d, \frac{1}{\epsilon}\right)$ i.i.d. samples from P in the streaming model, there is a nearly-linear time algorithm to compute $\hat{\mu}$ such that w.h.p.

$$(i) \text{ Memory usage} = \tilde{O}(d) \quad \text{and} \quad (ii) \quad \|\hat{\mu} - \mu\|_2 = \tilde{O}(\epsilon)$$

- Near-optimal error even with infinite samples and memory
- Extends to other well-behaved distributions:
 - Bounded covariance distributions
 - More generally, “stable” distributions

Our Results: Beyond Robust Mean Estimation

Problem	Data Distribution (Before Corruption)	Memory	Error rate

Our Results: Beyond Robust Mean Estimation

Problem	Data Distribution (Before Corruption)	Memory	Error rate
Robust Covariance Estimation	Bdd. 4-th moment	$\tilde{O}(d^2)$	$\ \hat{\Sigma} - \Sigma\ _F = O(\sqrt{\epsilon})$
	Gaussian Distribution	$\tilde{O}(d^2)$	$\ \Sigma^{-0.5} \hat{\Sigma} \Sigma^{-0.5} - I\ _F = \tilde{O}(\epsilon)$

Our Results: Beyond Robust Mean Estimation

Problem	Data Distribution (Before Corruption)	Memory	Error rate
Robust Covariance Estimation	Bdd. 4-th moment	$\tilde{O}(d^2)$	$\ \hat{\Sigma} - \Sigma\ _F = O(\sqrt{\epsilon})$
	Gaussian Distribution	$\tilde{O}(d^2)$	$\ \Sigma^{-0.5} \hat{\Sigma} \Sigma^{-0.5} - I\ _F = \tilde{O}(\epsilon)$
Robust Linear Regression	$Y = X^\top \theta^* + Z$ <ul style="list-style-type: none"> • $X \sim \mathcal{N}(0, I)$ • $X \perp Z$, $Z \sim \mathcal{N}(0, 1)$ • θ^* bdd. 	$\tilde{O}(d)$	$\ \hat{\theta} - \theta^*\ _2 = O(\sqrt{\epsilon})$
Robust Logistic Regression	...	$\tilde{O}(d)$	$\ \hat{\theta} - \theta^*\ _2 = O(\sqrt{\epsilon})$

Our Results: Beyond Robust Mean Estimation

Problem	Data Distribution (Before Corruption)	Memory	Error rate
Robust Covariance Estimation	Bdd. 4-th moment	$\tilde{O}(d^2)$	$\ \hat{\Sigma} - \Sigma\ _F = O(\sqrt{\epsilon})$
	Gaussian Distribution	$\tilde{O}(d^2)$	$\ \Sigma^{-0.5} \hat{\Sigma} \Sigma^{-0.5} - I\ _F = \tilde{O}(\epsilon)$
Robust Linear Regression	$Y = X^\top \theta^* + Z$ <ul style="list-style-type: none"> $X \sim \mathcal{N}(0, I)$ $X \perp Z, Z \sim \mathcal{N}(0, 1)$ θ^* bdd. 	$\tilde{O}(d)$	$\ \hat{\theta} - \theta^*\ _2 = O(\sqrt{\epsilon})$
Robust Logistic Regression	...	$\tilde{O}(d)$	$\ \hat{\theta} - \theta^*\ _2 = O(\sqrt{\epsilon})$
Robust Stochastic Convex Optimization	$\min_{\theta \in \mathbb{R}^d} F(\theta)$ <ul style="list-style-type: none"> $F(\theta) := \mathbb{E}_Z[f(\theta; Z)]$ Well-conditioned $\text{Cov}(\nabla f(\theta; Z))$ bdd. 	$\tilde{O}(d)$	$\ \hat{\theta} - \theta^*\ _2 = O(\sqrt{\epsilon})$

Summary

- Developed the first **streaming** algorithms for **high-dimensional robust** statistics

Summary

- Developed the first **streaming** algorithms for **high-dimensional robust** statistics
- **Near-optimal space** complexities for various robust tasks:
 - mean and covariance estimation
 - linear regression and logistic regression
 - stochastic optimization

Summary

- Developed the first **streaming** algorithms for **high-dimensional robust** statistics
- **Near-optimal space** complexities for various robust tasks:
 - mean and covariance estimation
 - linear regression and logistic regression
 - stochastic optimization

Open Questions

Summary

- Developed the first **streaming** algorithms for **high-dimensional robust** statistics
- **Near-optimal space** complexities for various robust tasks:
 - mean and covariance estimation
 - linear regression and logistic regression
 - stochastic optimization

Open Questions

- Your favorite robust statistical tasks in the streaming setting
- Sample-Memory tradeoff
- Stronger (adaptive) adversaries?

Summary

- Developed the first **streaming** algorithms for **high-dimensional robust** statistics
- **Near-optimal space** complexities for various robust tasks:
 - mean and covariance estimation
 - linear regression and logistic regression
 - stochastic optimization

Open Questions

- Your favorite robust statistical tasks in the streaming setting
- Sample-Memory tradeoff
- Stronger (adaptive) adversaries?

Please visit our poster for more details!

Thank You!