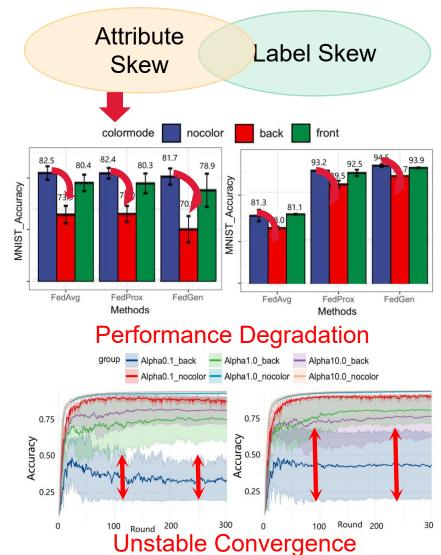


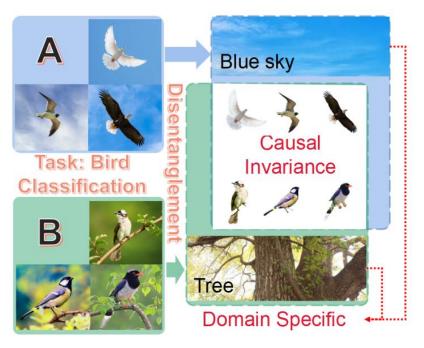
Disentangled Federated Learning for Tackling Attributes Skew via Invariant Aggregation and Diversity Transferring

Zhengquan Luo^{1,2}, Yunlong Wang^{2,*}, Zilei Wang¹, Zhenan Sun², Tieniu Tan²

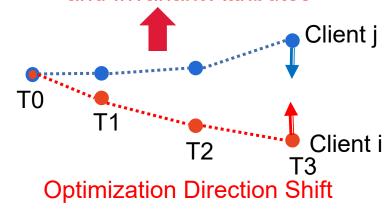
University of Science and Technology of China (USTC)
 Institute of Automation, Chinese Academy of Sciences (CASIA)

Motivation


Methods


Motivation

Methods


Motivation

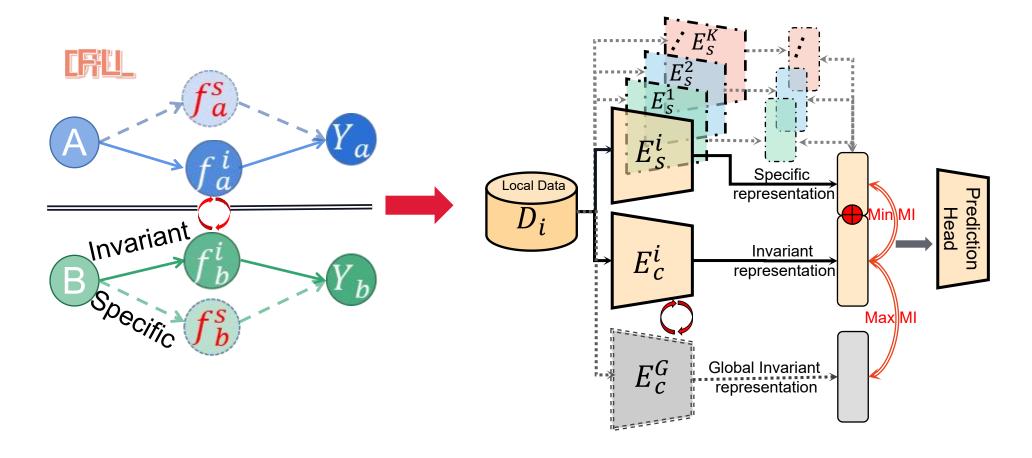
Non-i.i.d

Entangled Local-specific and Invariant Attributes

Motivation

Methods

One-stage Optimization -> Alternating Local-global Optimization


$$\min_{\omega} \left\{ f(\omega) := \frac{1}{N} \sum_{k=1}^{N} h_k(\omega) \right\} \qquad \min_{\omega_c} \left\{ f(\omega_c) := \frac{1}{N} \sum_{k=1}^{N} \min_{\omega_{k,s}} h_k(\omega_i) \right\} \\
\omega_i = M(\omega_c, \omega_{k,s}) = P_c \omega_c + P_s \omega_{k,s} \right\}$$

One stage optimization

Alternating local-global optimization

$$\begin{aligned}
\omega_k^* &= M(\omega_c, \omega_{k,s}^*) \\
\min_{\omega_c} \left\{ f(\omega_c) := \frac{1}{N} \sum_{k=1}^N h_k(\omega_k^*) \right\} \\
\omega_{k,s}^* &= \underset{\omega_{k,s}}{\operatorname{arg min}} h_k(M(\omega_c, \omega_{k,s}))
\end{aligned}$$

Single branch-> Two Branch

Convergence

1. Non-convex and L-Lipschitz smoothness of f:

$$\|\nabla f(\omega) - \nabla f(\omega')\| \leq L \|\omega - \omega'\|, \forall \omega, \omega'$$

2. Polyak-Łojasiewicz of I_c , I_s :

$$\left\| \nabla I_{c} \left(\omega, \omega_{c}^{t} \right) - \nabla I_{c} \left(\omega', \omega_{c}^{t} \right) \right\| \geqslant \mu_{I_{c}} \left\| \omega - \omega' \right\|, \forall \omega, \omega'$$

$$\left\| \nabla I_{s} \left(\omega, \omega_{c}^{t} \right) - \nabla I_{s} \left(\omega', \omega_{c}^{t} \right) \right\| \geqslant \mu_{I_{s}} \left\| \omega - \omega' \right\|, \forall \omega, \omega'$$

3. $\overline{\mu}$ -strongly convex of h_k and Polyak-Łojasiewicz:

$$\left\| \nabla h_k(M(\omega_c, \omega_{k,s}^{t+1,*}), \omega_c^t) - \nabla h_k(M(\omega_c', \omega_{k,s}^{t+1,*}), \omega_c^t) \right\|$$

$$\geq \overline{\mu} \left\| \omega_c - \omega_c' \right\|$$

4. Bounded second moments of I_c , I_s gradient:

$$\mathbb{E}_{k} \left[\left\| \nabla I_{c} \left(\omega, \omega_{c}^{t} \right) \right\|^{2} \right] \leqslant \epsilon_{c}^{2}, \exists \epsilon_{c}$$

$$\mathbb{E}_{k} \left[\left\| \nabla I_{s} \left(\omega, \omega_{c}^{t} \right) \right\|^{2} \right] \leqslant \epsilon_{s}^{2}, \exists \epsilon_{s}$$

$$\mathbb{E}_{s_t}[f(\omega_c^{t+1})] \leqslant f(\omega_c^t) - \alpha \left\| \nabla f(\omega_c^t) \right\| + \beta \epsilon_s^2 - \eta_c \epsilon_c^2$$

$$\frac{1}{T} \sum_{s=0}^{T-1} \left\| \nabla f(\omega_c^t) \right\| \leqslant \frac{1}{\alpha T} \left(f(\omega_c^0) - f^* \right) + \beta \epsilon_s^2 - \eta_c \epsilon_c^2$$

DFL is convergent even if only part of the extractor participates in the aggregation, based on the bounded gradient of the local specific branch.

Techniques

Representation Disentanglement

$$L_{MI}^{k} := I_{s}(E_{s}^{k}(x^{k}), E_{c}^{k}(x^{k})) - I_{c}(E_{c}^{k}(x^{k}), E_{c}^{G}(x^{k}))$$

Local MI minimization

Global MI maximization

Invariant Aggregation

$$\mathbb{E}_c^G = \omega_k \mathbb{E}_c^k = \sum_{k=1}^K \frac{n_k}{N} \mathbb{E}_c^k$$

Diversity Transferring

$$\left\{R_A^{k,j}\right\} := \left\{E_s^j(x^k) \bigoplus E_c^k(x^k) | j \in |K|\right\}$$

cross-domain specific extractors local invariant extractor

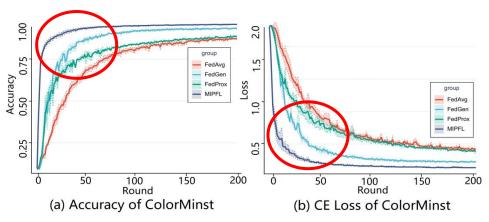
Motivation

Methods

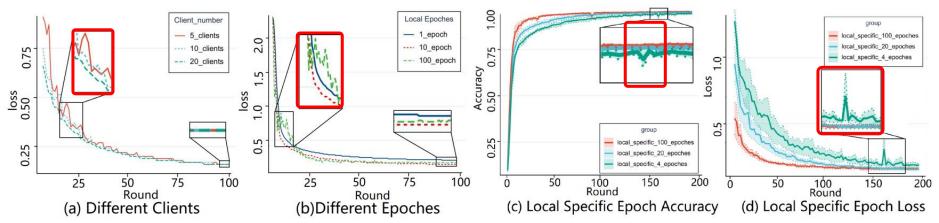
Results

Verification

Top-1 test accuracy of verifications on Colored-MNIST, 3Dshapes, dSprites.


Dataset	Attributes	clients	FedAvg	FedProx	FedGen	DFL
Colored-MNIST	BG color	10/20	88.88±0.28	89.93±0.87	93.47±0.26	95.91±0.13
3Dshapes	BG color	20/50	98.57±0.46	98.16±0.79	98.38±0.47	99.37±0.09
3Dshapes	Scale	10/10	89.34±1.25	89.93±1.43	76.57±9.18	90.38±0.56
dSprites	Orientation	20/40	73.55±4.78	71.64±5.23	82.69±1.82	86.74±2.09

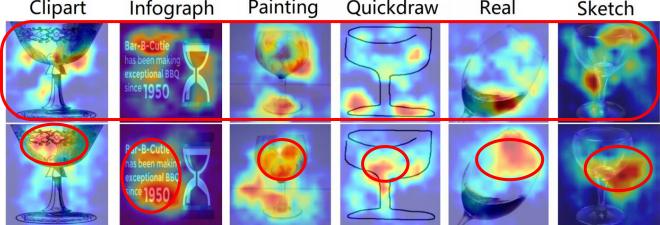
Ablation study of DFL in Colored-MNIST


	Invariant Aggregation	Diversity Transferring	DFL
10/20			95.11±0.13
Ratio=0.5		$\sqrt{}$	95.29±0.33
BG-color			96.02±0.30

Results

Verification

Accuracy and cross-entropy curves as communication increase, and the Accuracy curve as client number increases.


Loss curves with different client participation and different local epochs, and the accuracy and cross-entropy loss curves.

Results

Application

Top-1 test accuracy of application on DomainNet.

<u> </u>		Clipart	Infograph	Painting	Quickdraw	Real	Sketch	Avg
FedAvg	DomainNet	77.70	37.29	62.84	73.00	70.67	72.56	65.68
FedProx	Backbone	77.71	38.96	62.20	72.50	71.08	71.12	65.60
FedBN	=AlexNet	76.43	35.31	65.11	83.60	74.45	74.55	68.24
DFL	Top-10 Classes	77.76	41.55	66.88	84.10	76.42	74.65	70.23
FedAvg	DomainNet	96.32	60.12	94.83	82.10	95.81	93.68	87.14
FedProx	Backbone	96.58	60.27	94.67	82.90	95.15	94.04	87.27
FedBN	=ResNet101	97.15	61.34	94.80	87.00	96.63	94.95	88.65
DFL	Top-10 Classes	96.20	61.64	95.01	89.60	96.73	95.67	89.14
SingleSet	ResNet101	69.3	34.5	66.3	66.8	80.1	60.7	62.95
DFL	All 345 Classes	78.4	38.2	71.2	70.4	82.7	68.6	68.25
	Clinart Ir	ofograph	Painting	Quickdraw	Real	Sketch		

Visualization of DomainNet.

THANK YOU