
Practical Almost-Linear-Time 
Approximation Algorithms for 
Hybrid and Overlapping Graph 
Clustering

Konstantinos Ameranis, Lorenzo Orecchia, Kunal Talwar, Charalampos Tsourakakis



Nearly-Linear-Time Approximation Algorithms for Overlapping Graph Clustering with Provable Guarantees

Ratio Cuts
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Definitions

Nodes

Edges

Non-negative node weights

Non-negative edge weights

Incidence matrix

Laplacian

Normalized Laplacian

Edge weights Matrix



Nearly-Linear-Time Approximation Algorithms for Overlapping Graph Clustering with Provable Guarantees

Ratio-Cut problem definition
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Ratio-Cut problem definition
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Balanced & K-Clustering

Balanced Clustering:

K-Clusters:
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You
Your 
high

 school

Your
college

Overlapping Cuts (Arora et. al 2012)
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Overlapping Cuts - Introducing nodes into the cut

Edge Cut Mixed Cut Node Cut
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Overlapping Cuts

λ-Hybrid Cut: λ-HCUT
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Overlapping Cuts

ε-Overlapping Ratio Cut: ε-ORC
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Question: Can we design a framework for overlapping graph 
partitioning (OGP) that allows for 

(i) a principled and intuitive mathematical formulation, 
together with
(ii) solid worst-case approximation algorithms that
(iii) scale gracefully to large networks?
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Previous Work

● Lots of work, but missing at least one of the desired properties (Ahn et al., 2010; 
Andersen et al., 2012; Arora et al., 2012; Bonchi et al., 2013; Khandekar et al., 
2014; Mishra et al., 2007; Airoldi et al., 2008; Yang & Leskovec, 2013; Gopalan 
& Blei, 2013; Li et al., 2017; Palla et al., 2012; Tsourakakis, 2015; Whang et 
al., 2016)

● All properties satisfied for non-overlapping ratio-cut objectives (Leighton & 
Rao, 1999; Arora et al., 2009; Leskovec et al., 2009; Shi & Malik, 2000; 
Orecchia et al., 2008)

● Scalable NON-OVERLAPPING graph-partitioning heuristics KL (Kernighan & 
Lin, 1970b), METIS (Karypis & Kumar, 1996; 1998; 1995) Graclus (Dhillon et 
al., 2007) KaHIP (Sanders & Schulz, 2013).
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Ratio-Cut problem

● Global Objective is not convex! (convex over convex)
● But very similar to:
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Cheeger Inequality (Alon & Milman, 1985)

Guarantee we know for G: 

Problem: Eigenvalues of the normalized Laplacian are affected 
both by the size of the cut but also from the length of paths

Solution: Construct certificate graph H where every cut in H is 
worse that the equivalent in G, but all paths are small 
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Cut-Matching Game (Khandekar et al., 2014)
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Cut-Matching Game (Khandekar et al., 2014)

● In every round the smallest eigenvalue increases by 1/log(n).
● In every round we incur constant congestion.
● After O(log2(n)) iterations, H will be O(log(n))-expander with 

O(log2(n)) congestion.
● H certifies a O(log(n))-approximation.
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Cut-Matching Game (Khandekar et al., 2014)

H
0 

= G H
1 

/(1+α
1

)
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Cut-Matching Game (Khandekar et al., 2014)
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Finding the initial cut

Non smooth, small changes in the input, 
lead to big changes in the result

u is a random vector

Every eigenvector is weighted by 

Eigenvectors with similar eigenvalues are equally present

Smoothness
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Cut Improvement (Andersen & Lang, 2008)

● Andersen & Lang 2008
● Given a seed cut s, find a better cut x

● Convex!!!
● Solution can be found through a small number of s-t maxflow computations
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Cut Improvement (Andersen & Lang, 2008)

Augment graph 
with source s and 
sink t.

Connect s to all 
nodes in S and all 
nodes in T to t. 
Degree of s and t 
are the same

For the correct 
value of α the blue, 
red and black cuts 

have the same 
value

The result has a 
better ratio cut



Nearly-Linear-Time Approximation Algorithms for Overlapping Graph Clustering with Provable Guarantees

Cut Improvement - Overlapping

The flow through 
node v is limited to 
λ · μ

v

If the internal edge 
is cut, then the 

node belongs to 
the overlap

Break up nodes in 
v

in
 and v

out
. All 

edges exit 
out-nodes and 
enter in-nodes.
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Extensions

Balanced Clustering:
- In the cut-improve step, starting from a bisection, don’t 

lower α to values that (S’, T’) are not balanced.
- Bad for theoretical guarantees

K-Clustering:
- Recursive bisectioning K-1 times as described in Kannan et 

al., 2004
- Also bad for theoretical guarantees
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Results

Datasets:
● Synthetic Overlapping Stochastic Block Model (O-SBM)
● Real social networks from SNAP (Leskovec & Krevl, 2014)

Competing algorithms
● cm+improve: Cut matching + cut improvement (this work)
● SweepCut: Best threshold in spectral
● Spectral + Greedy Improve: Start with spectral bisection, use greedy 

Kernighan-Lin algorithm
● METIS: Contract-Cut-Expand heuristic algorithm
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Datasets

L R C

L p ε p

R ε p p

C p p q

O-SBM: Three blocks (Left, Right, Center) n=10,000
Probability of edge depends only on which blocks the two nodes belong
Center is well connected to both Left and Right

Network Description n m time

DBLP Co-authorship network 83,114 409,541 2-4min

Amazon Co-purchasing network 334,863 925,872 15-18min

Youtube Group network 1,134,890 2,987,624 55-75min
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Overlapping Stochastic Block Model
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Overlapping Stochastic Block Model
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DBLP co-authorship network
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Amazon co-purchasing network
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Amazon co-purchasing network
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Youtube



Nearly-Linear-Time Approximation Algorithms for Overlapping Graph Clustering with Provable Guarantees

K-Clusters in DBLP
Recursive bisectioning!
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Future Work

● Extend work to hypergraphs
● Use different initial cut strategies
● Improve runtime
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Questions?
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