

On Finite-Sample Identifiability of Contrastive Learning-Based Nonlinear Independent Component Analysis

Qi Lyu and Xiao Fu

School of EECS, Oregon State University

July 11, 2022

Independent Component Analysis (ICA)

- ▶ ICA learns statistically independent latent factors from data.
- ▶ ICA is widely applied.
 - ▶ Biomedical signal processing [Ziehe et al., 2000, Oveisi et al., 2012]
 - ▶ Speech separation [Comon and Jutten, 2010]
 - ▶ Causal discovery [Zhang and Hyvärinen, 2010, Monti et al., 2020]
 - ▶ Disentanglement [Locatello et al., 2020, Khemakhem et al., 2020]
 - ▶ Self-supervised Learning [Zimmermann et al., 2021]
 - ▶

The “cocktail party problem”. Source: <https://dbcover.com/cocktail-party-effect-and-room-acoustics/>

Nonlinear ICA (nICA) Model

- ▶ nICA assumes

$$\mathbf{x} = \mathbf{g}(\mathbf{s}),$$

where $\mathbf{x} \in \mathbb{R}^M$ is the data, $\mathbf{s} \in \mathbb{R}^D$ are the D latent components.

- ▶ $\mathbf{g}(\cdot) : \mathbb{R}^D \rightarrow \mathbb{R}^M$ is a smooth and invertible unknown function.
- ▶ s_1, \dots, s_D are statistically independent.
- ▶ Challenge: nICA is not identifiable [Hyvärinen and Pajunen, 1999].
- ▶ Solution: additional information is needed.
- ▶ Works on model identification are developing
[Hyvarinen and Morioka, 2016, Hyvarinen and Morioka, 2017,
Hyvarinen et al., 2019, Khemakhem et al., 2020, Locatello et al., 2020,
Gresele et al., 2020].

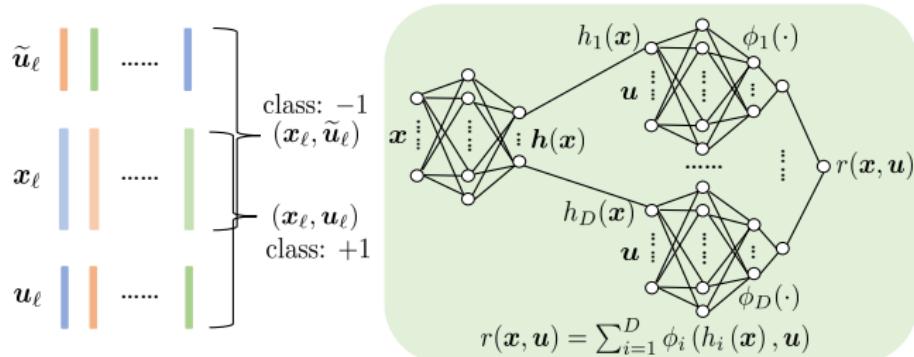
Contrastive Learning-Based nICA

- ▶ [Hyvarinen et al., 2019] assumes that an *auxiliary variable* \mathbf{u} is observed.
- ▶ Given \mathbf{u} , \mathbf{s} is conditionally independent, i.e.,

$$\log p(\mathbf{s}|\mathbf{u}) = \sum_{i=1}^D q_i(s_i, \mathbf{u}),$$

where $q_i(\cdot, \cdot)$ is a continuous function.

- ▶ Goal: learn a logistic regression function $r(\mathbf{x}, \mathbf{u})$ [Hyvarinen et al., 2019].



Identifiability Result

- ▶ Criterion: realize using the logistic loss

$$\min_{\phi, h} \mathcal{L} = \min_{\phi, h} \mathbb{E}_z [\log(1 + \exp[-dr(z)])],$$

where $d = +1$ for $z = (\mathbf{x}, \mathbf{u})$, $d = -1$ for $z = (\mathbf{x}, \tilde{\mathbf{u}})$.

Theorem (Model Identifiability) [Hyvarinen et al., 2019] [Informal]

- ▶ Variability Assumption is satisfied (i.e., \mathbf{u} is informative);
- ▶ \mathbf{s} is conditionally independent given \mathbf{u} ;
- ▶ With infinite data samples.

Then, $h_{\pi(i)}^*(\mathbf{x}) = v_i^{-1}(s_i)$, for $i = 1, \dots, D$, where $\{\pi(1), \dots, \pi(D)\}$ is a permutation of $\{1, \dots, D\}$

- ▶ A notable **gap**: in practice, we only have **finite samples**.

Challenges

- ▶ There is no sample complexity analysis on nICA.
 - ▶ [Arora et al., 2012] analyzed classic linear ICA.
 - ▶ [Lyu and Fu, 2021] assumed a structured (post-nonlinear) model.
 - ▶ [Lyu et al., 2022] considered a multiview mixture model.
- ▶ What are the **challenges** for analyzing nICA?
 - ▶ The optimal solution is based on sample size $N = \infty$;
 - ▶ Taking derivatives only holds on continuous open domain.
 - ▶ No unified metric: in supervised learning, one measures if $y \approx f(x)$.

Finite Sample Analysis

- ▶ How do we approach the problem?
- ▶ **Step1:** Logistic regression, learn $r(\mathbf{x}, \mathbf{u}) = \sum_{i=1}^D \phi_i(h_i(\mathbf{x}), \mathbf{u})$.
 - ▶ $N = \infty$: after convergence [Hyvarinen et al., 2019, Goodfellow et al., 2014],

$$\underbrace{\sum_{i=1}^D \phi_i^*(h_i^*(\mathbf{x}), \mathbf{u})}_{\hat{r}^*(\mathbf{x}, \mathbf{u})} = \underbrace{\log p(\mathbf{x}|\mathbf{u}) - \log p(\mathbf{x})}_{r^*(\mathbf{x}, \mathbf{u})}. \quad (1)$$

- ▶ $N \neq \infty$: we derive that

$$\mathbb{E}[|\hat{r}^*(\mathbf{x}, \mathbf{u}) - r^*(\mathbf{x}, \mathbf{u})|^2] \leq \varepsilon,$$

where ε depends on modeling error, function learner and sample size.

Finite Sample Analysis

- ▶ **Step2:** Characterize the unobserved data point.
 - ▶ $N = \infty$: the equation holds **everywhere** (i.e., $r^*(x, u) = \hat{r}^*(x, u)$)

$$\sum_{i=1}^D q_i(v_i(y_\ell), u_\ell) - \log p_s(v(y_\ell)) = \sum_{i=1}^D \phi_i([y_\ell]_i, u_\ell), \quad \forall (x_\ell, u_\ell)$$

where $y = h(x)$, $v(y) = f(h^{-1}(y)) = s$.

- ▶ $N \neq \infty$: for each **unobserved** (x_ℓ, u_ℓ) , characterize the distance

$$\varepsilon_\ell = \left(\sum_{i=1}^D q_i(v_i(y_\ell), u_\ell) - \log p_s(v(y_\ell)) - \sum_{i=1}^D \phi_i([y_\ell]_i, u_\ell) \right)^2,$$

with $\mathbb{E}_{\mathcal{D}}[\varepsilon_\ell] \leq \varepsilon$.

- ▶ **Step3:** Compute the derivatives.

- ▶ $N = \infty$: taking derivative gives $\gamma_{jk} = \left[\frac{\partial^2 v_1(y)}{\partial y_j \partial y_k}, \dots, \frac{\partial^2 v_D(y)}{\partial y_j \partial y_k} \right]^\top = 0$
- ▶ $N \neq \infty$: numerically estimating the cross-derivatives gives

$$\mathbb{E}_{\mathcal{D}} [\|\hat{\gamma}_{jk}\|_2^2] \leq \text{certain bound.}$$

Sample Complexity Result

Theorem (Sample Complexity) [Informal]

- ▶ Assume the problem is solved with N i.i.d. samples $\{\mathbf{z}_\ell\}_{\ell=1}^N$;
- ▶ the learned \mathbf{h} is invertible;
- ▶ the 4th-order derivative of $\hat{r}^*(\mathbf{z}) - r^*(\mathbf{z})$ is bounded.

Then, we have the following bound with probability of at least $1 - \delta$,

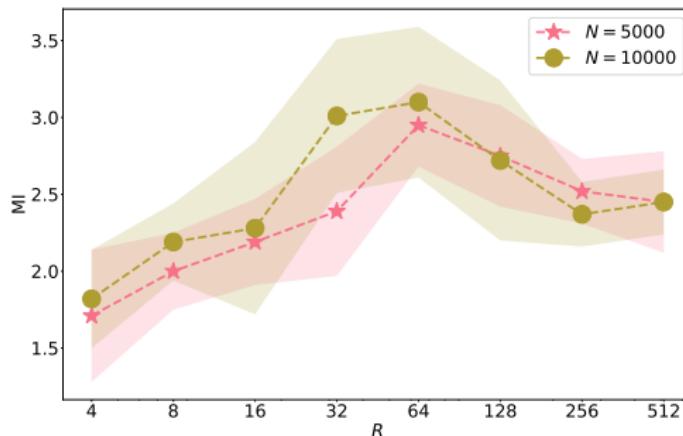
$$\mathbb{E}_{\mathcal{D}} [\|\hat{\gamma}_{jk}\|_2^2] \leq O \left(\frac{D(1 + e^\alpha)}{e^{\alpha/2}} \left(\mathfrak{R}_N + \nu + \alpha \sqrt{\frac{\ln(1/\delta)}{N}} \right)^{1/2} \right),$$

where α is a bound of $|r(\mathbf{z})|$, \mathfrak{R}_N is Rademacher complexity.

- ▶ \mathfrak{R}_N grows when DNN is more complex and decreases when N grows
- ▶ ν : the expressiveness of the DNN; $\nu = 0$ when DNN is universal.
- ▶ **Implication:** Use an expressive DNN, not an overly complex one.

Experiment Results

- We follow the settings in [\[Hyvarinen et al., 2019\]](#).
- s_i is the product of a Gaussian and a Laplacian variable.
- u corresponds to different time frames.
- $g(\cdot)$ is neural network with leaky ReLU.
- $h(\cdot)$, $\phi_i(\cdot)$ are modeled with 3-hidden-layer network with R neurons.
- Metric: mutual information between s_i and $h_j(x)$.



- There is a trade-off in terms of expressiveness of $h(\cdot)$ (i.e., R).

Conclusion

- ▶ We propose the first framework for sample complexity of nICA.
- ▶ The framework is a nontrivial integration of
 - ▶ statistical learning theory;
 - ▶ numerical differentiation;
 - ▶ problem-specific design of success metric.
- ▶ It is also applicable to other nonlinear mixture learning problems.

- Arora, S., Ge, R., Moitra, A., and Sachdeva, S. (2012).
Provable ICA with unknown Gaussian noise, with implications for Gaussian mixtures and autoencoders.
In *Advances in Neural Information Processing Systems*, volume 25.
- Comon, P. and Jutten, C. (2010).
Handbook of Blind Source Separation.
Elsevier.
- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014).
Generative adversarial nets.
In *Proceedings of NIPS 2014*, pages 2672–2680.
- Greselle, L., Rubenstein, P. K., Mehrjou, A., Locatello, F., and Schölkopf, B. (2020).
The incomplete Rosetta stone problem: Identifiability results for multi-view nonlinear ICA.
In *Proceedings of UAI 2020*, pages 217–227.
- Hyvärinen, A. and Morioka, H. (2016).
Unsupervised feature extraction by time-contrastive learning and nonlinear ica.
In *Advances in Neural Information Processing Systems*, volume 29.
- Hyvärinen, A. and Morioka, H. (2017).
Nonlinear ICA of temporally dependent stationary sources.
In *International Conference on Artificial Intelligence and Statistics*, volume 54, pages 460–469.

- **Hyvärinen, A. and Pajunen, P. (1999).**
Nonlinear Independent Component Analysis: Existence and uniqueness results.
Neural Networks, 12(3):429–439.
- **Hyvarinen, A., Sasaki, H., and Turner, R. (2019).**
Nonlinear ICA using auxiliary variables and generalized contrastive learning.
In *International Conference on Artificial Intelligence and Statistics*, pages 859–868.
- **Khemakhem, I., Kingma, D., Monti, R., and Hyvarinen, A. (2020).**
Variational autoencoders and nonlinear ICA: A unifying framework.
In *International Conference on Artificial Intelligence and Statistics*, pages 2207–2217. PMLR.
- **Locatello, F., Poole, B., Rätsch, G., Schölkopf, B., Bachem, O., and Tschannen, M. (2020).**
Weakly-supervised disentanglement without compromises.
In *International Conference on Machine Learning*, pages 6348–6359. PMLR.
- **Lyu, Q. and Fu, X. (2021).**
Identifiability-guaranteed simplex-structured post-nonlinear mixture learning via autoencoder.
IEEE Transactions on Signal Processing, 69:4921–4936.
- **Lyu, Q., Fu, X., Wang, W., and Lu, S. (2022).**
Understanding latent correlation-based multiview learning and self-supervision: An identifiability perspective.
In *International Conference on Learning Representations*.

- Monti, R. P., Zhang, K., and Hyvärinen, A. (2020).
Causal discovery with general non-linear relationships using non-linear ICA.
In *Uncertainty in Artificial Intelligence*, pages 186–195. PMLR.
- Oveisi, F., Oveisi, S., Efranian, A., and Patras, I. (2012).
Nonlinear Independent Component Analysis for EEG-Based Brain-Computer Interface Systems.
Independent Component Analysis for Audio and Biosignal Applications, Edited by Ganesh R. Naik, page 165.
- Zhang, K. and Hyvärinen, A. (2010).
Distinguishing causes from effects using nonlinear acyclic causal models.
In *Causality: Objectives and Assessment*, pages 157–164. PMLR.
- Ziehe, A., Muller, K. ., Nolte, G., Mackert, B. ., and Curio, G. (2000).
Artifact reduction in magnetoneurography based on time-delayed second-order correlations.
IEEE Trans. Biomedical Eng., 47(1):75–87.
- Zimmermann, R. S., Sharma, Y., Schneider, S., Bethge, M., and Brendel, W. (2021).
Contrastive learning inverts the data generating process.
In *International Conference on Machine Learning*, pages 12979–12990. PMLR.