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Independent Component Analysis (ICA)

▶ ICA learns statistically independent latent factors from data.
▶ ICA is widely applied.

▶ Biomedical signal processing [Ziehe et al., 2000, Oveisi et al., 2012]
▶ Speech separation [Comon and Jutten, 2010]
▶ Causal discovery [Zhang and Hyvärinen, 2010, Monti et al., 2020]
▶ Disentanglement [Locatello et al., 2020, Khemakhem et al., 2020]
▶ Self-supervised Learning [Zimmermann et al., 2021]
▶ ......

The “cocktail party problem”. Source: https://dbcover.com/cocktail-party-effect-and-room-acoustics/
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Nonlinear ICA (nICA) Model

▶ nICA assumes

x = g(s),

where x ∈ RM is the data, s ∈ RD are the D latent components.
▶ g(·) : RD → RM is a smooth and invertible unknown function.
▶ s1, . . . , sD are statistically independent.
▶ Challenge: nICA is not identifiable [Hyvärinen and Pajunen, 1999].
▶ Solution: additional information is needed.
▶ Works on model identification are developing

[Hyvarinen and Morioka, 2016, Hyvarinen and Morioka, 2017,

Hyvarinen et al., 2019, Khemakhem et al., 2020, Locatello et al., 2020,

Gresele et al., 2020].
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Contrastive Learning-Based nICA

▶ [Hyvarinen et al., 2019] assumes that an auxiliary variable u is observed.
▶ Given u, s is conditionally independent, i.e.,

log p(s|u) =
D∑
i=1

qi (si ,u),

where qi (·, ·) is a continuous function.
▶ Goal: learn a logistic regression function r(x ,u) [Hyvarinen et al., 2019].
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Identifiability Result

▶ Criterion: realize using the logistic loss

min
ϕ,h

L = min
ϕ,h

Ez [log(1 + exp[−dr(z)])] ,

where d = +1 for z = (x ,u), d = −1 for z = (x , ũ).

Theorem (Model Identifiability) [Hyvarinen et al., 2019] [Informal]
▶ Variability Assumption is satisfied (i.e., u is informative);
▶ s is conditionally independent given u;
▶ With infinite data samples.

Then, h⋆
π(i)(x) = v−1

i (si ), for i = 1, . . . ,D, where {π(1), . . . , π(D)} is a
permutation of {1, . . . ,D}

▶ A notable gap: in practice, we only have finite samples.
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Challenges

▶ There is no sample complexity analysis on nICA.
▶ [Arora et al., 2012] analyzed classic linear ICA.
▶ [Lyu and Fu, 2021] assumed a structured (post-nonlinear) model.
▶ [Lyu et al., 2022] considered a multiview mixture model.

▶ What are the challenges for analyzing nICA?
▶ The optimal solution is based on sample size N = ∞;
▶ Taking derivatives only holds on continuous open domain.
▶ No unified metric: in supervised learning, one measures if y ≈ f (x).
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Finite Sample Analysis

▶ How do we approach the problem?
▶ Step1: Logistic regression, learn r(x ,u) =

∑D
i=1 ϕi (hi (x) ,u).

▶ N = ∞: after convergence [Hyvarinen et al., 2019, Goodfellow et al., 2014],

D∑
i=1

ϕ⋆
i (h

⋆
i (x) , u)︸ ︷︷ ︸

r̂⋆(x,u)

= log p(x |u)− log p(x)︸ ︷︷ ︸
r⋆(x,u)

. (1)

▶ N ̸= ∞: we derive that

E[|r̂⋆(x , u)− r⋆(x , u)|2] ≤ ε,

where ε depends on modeling error, function learner and sample size.
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Finite Sample Analysis

▶ Step2: Characterize the unobserved data point.
▶ N = ∞: the equation holds everywhere (i.e., r⋆(x , u) = r̂⋆(x , u))

D∑
i=1

qi (vi (yℓ), uℓ)− log ps(v(yℓ)) =
D∑
i=1

ϕi ([yℓ]i , uℓ) , ∀ (xℓ, uℓ)

where y = h(x), v(y) = f (h−1(y)) = s.
▶ N ̸= ∞: for each unobserved (xℓ, uℓ), characterize the distance

εℓ =

(
D∑
i=1

qi (vi (yℓ), uℓ)− log ps(v(yℓ))−
D∑
i=1

ϕi ([yℓ]i , uℓ)

)2

,

with ED[εℓ] ≤ ε.
▶ Step3: Compute the derivatives.

▶ N = ∞: taking derivative gives γjk =
[
∂2v1(y)
∂yj∂yk

, · · · , ∂2vD (y)
∂yj∂yk

]⊤
= 0

▶ N ̸= ∞: numerically estimating the cross-derivatives gives

ED
[
∥γ̂jk∥2

2

]
≤ certain bound.
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Sample Complexity Result

Theorem (Sample Complexity) [Informal]
▶ Assume the problem is solved with N i.i.d. samples {zℓ}Nℓ=1;
▶ the learned h is invertible;
▶ the 4th-order derivative of r̂⋆ (z)− r⋆ (z) is bounded.

Then, we have the following bound with probability of at least 1 − δ,

ED
[
∥γ̂jk∥2

2

]
≤ O

D(1 + eα)

eα/2

(
RN + ν + α

√
ln(1/δ)

N

)1/2
 ,

where α is a bound of |r(z)|, RN is Rademacher complexity.

▶ RN grows when DNN is more complex and decreases when N grows
▶ ν: the expressiveness of the DNN; ν = 0 when DNN is universal.
▶ Implication: Use an expressive DNN, not an overly complex one.
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Experiment Results
▶ We follow the settings in [Hyvarinen et al., 2019].
▶ si is the product of a Gaussian and a Laplacian variable.
▶ u corresponds to different time frames.
▶ g(·) is neural network with leaky ReLU.
▶ h(·), ϕi (·) are modeled with 3-hidden-layer network with R neurons.
▶ Metric: mutual information between si and hj(x).
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▶ There is a trade-off in terms of expressiveness of h(·) (i.e., R).
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Conclusion

▶ We propose the first framework for sample complexity of nICA.
▶ The framework is a nontrivial integration of

▶ statistical learning theory;
▶ numerical differentiation;
▶ problem-specific design of success metric.

▶ It is also applicable to other nonlinear mixture learning problems.
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