Legoged NANYANG
< | TECHNOLOGICAL
o) UNIVERSITY

" SINGAPORE

@ ?ﬁ%ﬂﬁﬁﬁwnmmw =. MicrOSOft

Finding Global Homophily in Graph
Neural Networks When Meeting
Heterophily

Xiang Li, Renyu Zhu, Yao Cheng, Weining Qian, ECNU
Caihua Shan, Dongsheng Li, MSRA
Siqiang Luo, NTU



% B R AL || Mi T YECHNOLOGICAL
£ ma VICroso UNIVERSITY

EAST CHINA NORMAL UNIVERSITY
SINGAPORE
Introducti

« Homophilous graphs
» Linked nodes tend to share similar features or have the same label
» Friendship network, political network, citation network, etc.

 Heterophilous graphs

» Linked nodes tend to have dissimilar features or different labels
> Protein structures, ecological food webs, criminal network, etc
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GNNs in heterophilous graphs

 Graph Neural Networks (GNNs)

» A non-linear form of smoothing operation over a node’s neighbors

» Works well in homophilous graphs & .

> But, in heterophilous graphs, errrr... T ’TX
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Figure 1. A heterophilous graph example

! Nodes with different labels could be given similar representations l
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* Leverage high-pass convolutional filters

L1 High-pass filters: push away a node’s embedding from its neighbors’

[0 Low-pass filters: do the opposite!

* Enlarge a node’s neighborhood

O Jump the locality and find global homophily
[ Set personalized neighborhood size? Big Challenge!
0 Homophilous nodes excluded in the neighborhood are not used!
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Figure 2. A toy example to show global homophily. All the homophilous
nodes express the global homophily of the center user. :
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A Naive solution

* To capture global homophily

= Add all the nodes to a node's neighborhood

= Side effect 1: quadratic time complexity for
neighborhood aggregation

= Side effect 2: more heterophilous nodes included




ceoed NANYANG
. TECHNOLOGICAL
UNIVERSITY

SINGAPORE

D) 1rmprs a5 Microsoft

EAST CHINA NORMAL UNIVERSITY

GloGNN framework

Inputs L layers

In each layer, we derive a coefficient matrix, based on which a node’s
embedding 1s generated by aggregating information from global nodes
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Linear characterization

* Represent each object by other objects

o coefficient matrix Z, embedding matrix H, noise matrix O

o linear subspace model, in the 1-th layer: HY) = Zz(O g 4 oW

 Decoupling neighborhood aggregation and
feature transformation

o transform feature matrix X and adjacency matrix A into
HY =mpy(X), HY = MLP,(A)
Initial node 0) _ (0) (0)
embedding HY = (1 - Q)HX + O‘HA
o add skip connection and get

HO — (1— ,},)Z(C)H(l) +~HO + oW
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Linear characterization

* Local graph structures are also useful!

z (1)

K
. 1 l l I l ~k '
min [|[HY —(1-9) 2O HO B O |5 +8111 20 1% +8:21120 = >~ M A" %

k=1

Remove noise Local graph structure
regularization

* A closed-form solution is

Z W% _

K
(L =HOHD)T 45 3" \eA" (1 = HOHO)T
L k=1

Quadratic time complexity

(1= 2HDED)T 4 (81 + Bo)ln| | pommmemeomocemeenees

1
1
1
i n is # of nodes in the graph |
I dis the embedding size !

Cubic time complexity
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* We write neighborhood aggregation as:
U+ (1— W)Z(J)*H(D +~yHO
* But the time complexity is a huge problem!
* Based on the Woodburﬁ formula, we transform:

(1= HOEO) + (81 + )|

1 _ 1 (1) 1 1 ONETIO (O\T
_ﬁ1+ﬁ21” (ﬁ1+ﬁ2)2H [(1_7)210+ﬁ1+ﬁ2(H V' H } (HV)

B K
Z(”* =[(1 - 'Y)H(” (H(I))T + Ba Z )\k}ik — (1 — ,T)H(D)(H(”)T] i
L k=1

(=2 HOHEO)T (81 + p2)Tn| :
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Neighborhood aggregation

In the I-th layer, calculate Q and then H

Reorder matrix multiplication from right to left

oty _ 177 g 177 g
B1 + B2 (B1 + B2)?

1 1 T oy ] T T 4 (1
foe 1 (gOyT )] FRONAINO
[(1—@2 T Ehrm ) (H7)

K
g (+1) =(1 — ,},)H(E)(H(U)TQ(EJJJ + B Z AkﬁkQ(lJrl)

k=1
—~(1 — ,},)H(U) (H(I))TQ(5+1) + ’yH(D)

* Derive a linear time complexity!
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* Grouping effect

Definition 4.1. (Grouping effect (Li et al., 2020)). Given
a set of nodes V = {v;}_{, let v; — v:, denote the condi-
tion that (1) ||z; —;||2 — 0 and (2) ||af —a% |2 — 0, Vk €
1, K|. A matrix Z is said to have grouping effect if

v, = v; = | Lip — Zjp| = 0,V1 < p < n. (9)

Condition (1) -> similar feature vectors
Condition (2) -> similar local graph structures

10
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Theoretical explanation
* For two objects v; and v,we have
Lemma 4.2. V1 <7,5.p <n,
|Z§;})* Z(t)*l < 5 5 |5 X0 h(£)||2||(h(z))T (1= 2 (HDYT R,
1
+ LI B o ()T — (1= ) () Rl
Ba(1 —5)?
P2 ST et - R
e E la¥ — ajl2lRl
Ae|AF, — Al
51 + )@2 Z | 7l
-1
where R = [(1 —)PHY(HMT + (8 + ﬂz)In] HO (RN,
Lemmad4.3. V1 <i,5,p<n,
|Z(l-)* . Z(l,)*| < ”(1 - 'Y)”hg(;l) - h’_g'l)HQ + ﬁ2 Zle Akliﬁ;gg - A;—,
el S B1 + Fa
where n = /b = 1|3 + A1, A .
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Theoretical explanation

* Finally, we induce

Lemma 4.4. Matrices Z'V*, (ZWT and H'*V) all have
grouping effect.

* Based on the lemma, if v->v, they have

O Similar coefficient vectors
[ Similar roles in characterizing other nodes
O Similar embedding vectors

12
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* Datasets

0 15 benchmark datasets
0 Varying Sizes (9 small-scale and 6 large-scale)
0 Varying homophilies/heterophilies

e Baselines

0 Standard methods: MLP
0 General GNNs: GCN, GAT, MixHop, GCNII

[0 Heterophilous-graph-oriented methods: H,GCN, WRGAT,
GPR-GNN, GGCN, ACM-GCN, LINKX

13
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Classification accuracy (I)

Table 1. The classification accuracy (%) over the methods on 9 small-scale datasets released in (Pei et al., 2020). The error bar (£) denotes
the standard deviation score of results over 10 trials. We highlight the best score on each dataset in bold and the runner-up score with
underline. Note that Edge Hom. (Zhu et al., 2020b) is defined as the fraction of edges that connect nodes with the same label.

a5 Microsoft

Texas Wisconsin Cornell Actor Squirrel Chameleon Cora Citeseer Pubmed >

Edge Hom. 0.11 0.21 0.30 022 022 0.23 0.81 074 0.80 =

#Nodes 183 251 183 7,600 5.201 2,277 2,708 3,37 19.717 2

#Edges 295 466 280 26,752 198,493 31,421 5278 4,676 44,327 &b

#Features 1,703 1,703 1,703 931 2,089 2325 1,433 3,703 500 <

#Classes 5 5 5 5 5 5 6 7 3

MLP 80.81 £4.75 85.20 £ 3.31 81.89 £ 6.40 36.53 £ 0.70 28.77 + 1.56 46.21 +2.99 75.69 £ 2.00 74.02 £ 1.90 87.16 £ 0.37 9.72
GCN 55.14 £ 5.16 51.76 £ 3.06 60.54 £ 5.30 2732+ 1.10 53.43+2.01 64.82 +2.24 86.98 & 1.27 76.50 £ 1.36 88.42 & 0.50 10.22
GAT 52.16 £+ 6.63 49.41 + 4.00 61.80+ 5.05 27.44 +0.80 40.72 4+ 1.55 60.26 + 2.50 8730+ 1.10 76.55 £+ 1.23 86.33 +0.48 11.11
MixHop TT.84 £ T7.73 75.88 £ 4.90 T3.51+£6.34 32224+ 2.4 43.80+1.48 60.50 & 2.53 87.61 £ 0.85 76.26 £ 1.33 8531+ 061 10.11
GCNII T7.57 £3.83 80.39 £ 3.40 TT.86 £ 3.79 3744 £ 1.30 38.47 £ 1.58 63.86 £3.04 | 88.37T+1.25 | 77.334+1.48 | 90.15+0.43 || 5.89
H>GCN 84.86 + 7.23 87.65 + 4.98 B2.70+ 5.28 35.70 + 1.00 36.48 + 1.86 60.114+2.15 B7.87T+1.20 7711+ 1.57 £89.40 4 0.38 6.72
WRGAT 83.62 £ 5.50 86.08 + 3.78 81.62+3.90 36.53 +0.77 48.854+0.78 65.24 + 0.87 B8.200 4+ 2.26 76.81 + 1.80 88.524+0.92 6.17
GPR-GNN 78.38 £4.36 82094 +4.21 80.27 £ 8.11 34.63 £ 1.22 31.61+1.24 4658 £ 1.71 87.95+1.18 T7.13 £ 1.67 87.54 +£0.38 8.83
GGCN 84.86 £+ 4.55 86.86 + 3.29 85.68 £ 6.63 37.54 + 1.56 55.17 + 1.58 71.14+1.84 87.95 4+ 1.05 T7.14+£1.45 80.15 £ 0.37 3.89
ACM-GCN | B7.84 + 4.40 | 88.431+3.22 | 85.14L6.07 36.28 + 1.09 54.40 £+ 1.88 66.93 + 1.85 87091 +0.95 77.32+1.70 90.00 &+ 0.52 3.78
LINKX T74.60 £ 8.37 75.49 £ 5.72 T84+ 581 36.10+£1.55 | 61.81 +1.80 | 6342+ 1.38 8464 £ 1.13 73.19+£0.99 87.86x 0.77 8.78
GloGNN 84324+ 4.15 87.06 £+ 3.53 B3.51+4.26 3735+ 1.30 57.544+1.39 60.78 +2.42 B8.31+1.13 | T7.41 £ 1.65 | 89.62+0.35 3.22
GloGNN++ | 84.05 = 4.90 58.04£3.22 | 85.95+5.10 | 37.70+1.40 | 57884+ 1.76 | 71.21+1.84 | 88.33+1.09 T7.22+ 1.78 89.24+0.39 2.56

Standard method: MLP
General GNNs: GCN, GAT, MixHop, GCNII
Heterophilous-graph-oriented methods: H,GCN, WRGAT, GPR-GNN, GGCN, ACM-GCN, LINKX

14
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Classification accuracy ()

Table 2. The classification results (%) over the methods on 6 large-scale datasets released in (Lim et al., 2021). Note that we compare
the AUC score on genius as in (Lim et al., 2021). For other datasets, we show the classification accuracy. The error bar (£) denotes the

standard deviation score of results over 5 trials. We highlight the best score on each dataset in bold and the runner-up score with underline.
Note that OOM refers to the out-of-memory error.

a" Microsoft

Penn94 pokec arXiv-year snap-patents genius twitch-gamers »

Edge Hom. 0.47 0.44 0.22 0.07 0.6l 0.54 =

#Nodes 41,554 1,632,803 169,343 2,923,922 421,961 168,114 fe

#Edges 1,362,229 30,622,564 1,166,243 13,975,788 984,979 6,797,557 &

#Features 5 65 128 269 12 7 <

#Classes 2 2 5 5 2 2

MLP 73.61 +0.40 62.37 +0.02 36.70 = 0.21 31.34 4+ 0.05 86.68 + 0.09 60.92 + 0.07 10.00
GCN 82,47 +£0.27 7545 £ 0.17 46.02 £ 0.26 45.65 £ 0.04 87424+ 0.37 62.18 £ 0.26 7.00
GAT 81.53 +0.55 7177 +6.18 46.05 = 0.51 4537+ 0.44 55.80 + 0.87 5080+ 4.12 8.50
MixHop 8347 +£0.71 81.07 £ 0.16 51.81 £ 0.17 52.16 4 0.09 90.58 + 0.16 65.64 + 0.27 4.17
GCNII 82.92 +0.59 78094 +0.11 47.21 £ 0.28 37.88 + 0.69 090.24 + 0.09 63.39 + 0.61 6.00
H-GCN 81.31 + 0.60 0O0OM 49.09 +0.10 0OoM OOM OOM 10.50
WRGAT 74.32 £ 0.53 00M 0O0OM 00M 00OM 00OM 11.92
GPR-GNN 81.38 £ 0.16 T8.83 £ 0.05 45.07 £ 0.21 40.19 4+ 0.03 00.05 £0.31 61.89 +0.29 7.83
GGCN OOM O0OM OOM O0OM OOM OOM 12.25
ACM-GCN | 82.52 +0.96 63.81 +5.20 47.37 £ 0.59 55.14 4+ 0.16 8033 +3.9 62.01 £0.73 6.83
LINKX 84.71 +0.52 82.04 £0.07 | 56.00 £1.34 | 61.95+0.12 00.77 +£0.27 66.06 + 0.19 2.50
GloGNN 85.57 + 0.35 823.00 £ 0.10 5468 £0.34 | 62.00+0.27 | 90.66 £0.11 66.19 4+ 0.20 217
GloGNN++ | 85.74 +0.42 | 83.05 £ 0.07 | 54.79+0.25 6203 +0.21 | 90.91 +0.13 | 66.34 4+ 0.29 1.33

Standard method: MLP
General GNNs: GCN, GAT, MixHop, GCNII
Heterophilous-graph-oriented methods: H,GCN, WRGAT, GPR-GNN, GGCN, ACM-GCN, LINKX

15
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Groupmg effect

The grouping effect of
coefficient matrix Z: block-
diagonal property

The grouping effect of
embedding matrix H: nodes

in the same class have similar
embedding vectors
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Efficiency study

* LINKX (- -) is simply based on MLP and runs (a) arS;in:-year (b) ;::,,94
fast

*  GPR-GNN (—) runs fast but performs poorly —

* GloGNN (—) converges fast to the 3 N —
best/runner-up results osh B

Seconds

(c) genius

— GPRGNN
— ACM-GON
- LK
—— GoGNN
—— o GN++

E 1o 190 200 40 &0 |0 100
Seconds Seconds
(e) snap-patents (f) twitch-gamers
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* #of k-hop neighbors with the same label

e #of positive Z values
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 We proposed two effective and efficient GNN models:
GIloGNN and GIoGNN++

 We theoretically proved the effectiveness of the models

 We automatically combined low-pass and high-pass

convolutional filters in neighborhood aggregation

 We showed the superiority of our models against 11

other competitors on 15 benchmark datasets

19
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ank you!
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