
Finding Global Homophily in Graph
Neural Networks When Meeting

Heterophily
Xiang Li, Renyu Zhu, Yao Cheng, Weining Qian, ECNU

Caihua Shan, Dongsheng Li, MSRA
Siqiang Luo, NTU



Introduction

• Homophilous graphs
 Linked nodes tend to share similar features or have the same label

 Friendship network, political network, citation network, etc.

• Heterophilous graphs
 Linked nodes tend to have dissimilar features or different labels

 Protein structures, ecological food webs, criminal network, etc
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GNNs in heterophilous graphs

• Graph Neural Networks (GNNs)
 A non-linear form of smoothing operation over a node’s neighbors
 Works well in homophilous graphs
 But, in heterophilous graphs, errrr…
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Nodes with different labels could be given similar representations

Figure 1. A heterophilous graph example



SOTAs
• Leverage high-pass convolutional filters
 High-pass filters: push away a node’s embedding from its neighbors’
 Low-pass filters: do the opposite!

• Enlarge a node’s neighborhood
 Jump the locality and find global homophily
 Set personalized neighborhood size? Big Challenge!
 Homophilous nodes excluded in the neighborhood are not used!
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Figure 2. A toy example to show global homophily. All the homophilous
nodes express the global homophily of the center user.



A Naïve solution

• To capture global homophily
 Add all the nodes to a node’s neighborhood
 Side effect 1: quadratic time complexity for

neighborhood aggregation
 Side effect 2: more heterophilous nodes included
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Can we find global homophily for 
a node and develop a GNN model 
that is both effective and efficient 

for heterophilous graphs?



GloGNN framework
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In each layer, we derive a coefficient matrix, based on which a node’s
embedding is generated by aggregating information from global nodes



Linear characterization
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• Represent each object by other objects
o coefficient matrix Z, embedding matrix H, noise matrix O
o linear subspace model, in the l-th layer:

• Decoupling neighborhood aggregation and
feature transformation

o transform feature matrix X and adjacency matrix A into

o add skip connection and get 

Initial node 
embedding



Linear characterization
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• Local graph structures are also useful!

• A closed-form solution is 

Remove noise Local graph structure
regularization

Cubic time complexity

Quadratic time complexity

𝐻𝐻(𝑙𝑙) ∈ 𝑅𝑅𝑛𝑛×𝑑𝑑

n is # of nodes in the graph 
d is the embedding size



Neighborhood aggregation
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• We write neighborhood aggregation as:

• But the time complexity is a huge problem!
• Based on the Woodbury formula, we transform:



Neighborhood aggregation
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• In the l-th layer, calculate Q and then H
• Reorder matrix multiplication from right to left

• Derive a linear time complexity!



Theoretical explanation

10

• Grouping effect

Condition (1) -> similar feature vectors
Condition (2) -> similar local graph structures



Theoretical explanation
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• For two objects vi and vj,we have



Theoretical explanation
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• Finally, we induce

• Based on the lemma, if vi->vj, they have
 Similar coefficient vectors
 Similar roles in characterizing other nodes
 Similar embedding vectors



Experiments

• Datasets
 15 benchmark datasets
 Varying Sizes (9 small-scale and 6 large-scale)
 Varying homophilies/heterophilies

• Baselines
 Standard methods: MLP
 General GNNs: GCN, GAT, MixHop, GCNII
 Heterophilous-graph-oriented methods: H2GCN, WRGAT,

GPR-GNN, GGCN, ACM-GCN, LINKX
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Classification accuracy (I)

14

Standard method: MLP
General GNNs: GCN, GAT, MixHop, GCNII
Heterophilous-graph-oriented methods: H2GCN, WRGAT, GPR-GNN, GGCN, ACM-GCN, LINKX



Classification accuracy (II)
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Standard method: MLP
General GNNs: GCN, GAT, MixHop, GCNII
Heterophilous-graph-oriented methods: H2GCN, WRGAT, GPR-GNN, GGCN, ACM-GCN, LINKX



Grouping effect
• The grouping effect of

coefficient matrix Z: block-
diagonal property

• The grouping effect of
embedding matrix H: nodes
in the same class have similar
embedding vectors
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Efficiency study

• LINKX ( ) is simply based on MLP and runs
fast

• GPR-GNN ( ) runs fast but performs poorly
• GloGNN ( ) converges fast to the

best/runner-up results
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Global homophily

• # of k-hop neighbors with the same label
• # of positive Z values
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Conclusion

• We proposed two effective and efficient GNN models:
GloGNN and GloGNN++

• We theoretically proved the effectiveness of the models

• We automatically combined low-pass and high-pass
convolutional filters in neighborhood aggregation

• We showed the superiority of our models against 11
other competitors on 15 benchmark datasets
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Thank you!
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