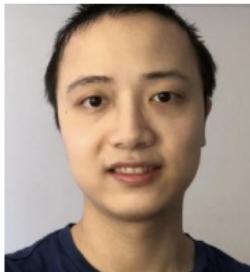


Learning Stochastic Shortest Path with Linear Function Approximation

Yifei Min¹



Jiafan He²

Tianhao Wang¹ Quanquan Gu²

¹Department of Statistics and Data Science, Yale

²Department of Computer Science, UCLA

Stochastic Shortest Path (SSP)

- Online SSP: a type of goal-oriented RL problem
 - Episodic interaction: each episode starts from an initial state and ends when the agent reaches the goal state g
 - Cost: each state-action pair (s, a) incurs a cost $c(s, a)$
 - Goal: to minimize the cumulative cost over all episodes

Stochastic Shortest Path (SSP)

- Online SSP: a type of goal-oriented RL problem
 - Episodic interaction: each episode starts from an initial state and ends when the agent reaches the goal state g
 - Cost: each state-action pair (s, a) incurs a cost $c(s, a)$
 - Goal: to minimize the cumulative cost over all episodes
- SSP is a generalization of episodic finite-horizon MDPs and discounted infinite-horizon MDPs
 - *The horizon length varies across episodes, and can be random*

Stochastic Shortest Path (SSP)

- Online SSP: a type of goal-oriented RL problem
 - Episodic interaction: each episode starts from an initial state and ends when the agent reaches the goal state g
 - Cost: each state-action pair (s, a) incurs a cost $c(s, a)$
 - Goal: to minimize the cumulative cost over all episodes
- SSP is a generalization of episodic finite-horizon MDPs and discounted infinite-horizon MDPs
 - *The horizon length varies across episodes, and can be random*
- Beyond tabular SSP: linear function approximation
 - Existing works on tabular SSP ([Rosenberg et al. 2020](#); [Cohen et al. 2021](#); [Tarbouriech et al. 2021](#), ...)
 - Linear mixture SSP: assume that there exists an *unknown* vector $\theta^* \in \mathbb{R}^d$ such that $\mathbb{P}(s'|s, a) = \langle \phi(s'|s, a), \theta^* \rangle$
 - Linear mixture model is common in RL literature ([Ayoub et al. 2020](#); [Zhou et al. 2021b](#), ...)

Stochastic Shortest Path (SSP)

- Online SSP: a type of goal-oriented RL problem
 - Episodic interaction: each episode starts from an initial state and ends when the agent reaches the goal state g
 - Cost: each state-action pair (s, a) incurs a cost $c(s, a)$
 - Goal: to minimize the cumulative cost over all episodes
- SSP is a generalization of episodic finite-horizon MDPs and discounted infinite-horizon MDPs
 - *The horizon length varies across episodes, and can be random*
- Beyond tabular SSP: linear function approximation
 - Existing works on tabular SSP ([Rosenberg et al. 2020](#); [Cohen et al. 2021](#); [Tarbouriech et al. 2021](#), ...)
 - Linear mixture SSP: assume that there exists an *unknown* vector $\theta^* \in \mathbb{R}^d$ such that $\mathbb{P}(s'|s, a) = \langle \phi(s'|s, a), \theta^* \rangle$
 - Linear mixture model is common in RL literature ([Ayoub et al. 2020](#); [Zhou et al. 2021b](#), ...)

This work: efficiently learn linear mixture SSP

Linear Mixture SSP: Algorithmic Design

- Two approaches for SSP in existing literature:
 - By reduction to finite-horizon MDP (Cohen et al. 2021; Chen et al. 2021, ...)
 - By (implicitly) viewing SSP as an infinite-horizon problem (Tarbouriech et al. 2021; Vial et al. 2021, ...)

Linear Mixture SSP: Algorithmic Design

- Two approaches for SSP in existing literature:
 - By reduction to finite-horizon MDP (Cohen et al. 2021; Chen et al. 2021, ...)
 - By (implicitly) viewing SSP as an infinite-horizon problem (Tarbouriech et al. 2021; Vial et al. 2021, ...)
- LEVIS: a novel optimistic value-iteration algorithm for linear mixture SSP
 - Model estimate updating criteria: coupling features with time
 - Determinant-doubling + time-step-doubling
 - Optimistic planning: contraction via perturbation
 - There is no discount factor in SSP → no contraction for EVI
 - Introduce an auxiliary discount factor by perturbing the transition probability

Linear Mixture SSP: Algorithm

Algorithm 1 LEVIS

```
1: for episode  $k = 1, 2, \dots, K$  do
2:   while  $s_t \neq g$  do
3:     Greedily take action  $a_t$ , and receive  $c(s_t, a_t)$  and  $s_{t+1}$ 
4:      $\Sigma_t \leftarrow \Sigma_{t-1} + \phi_V(s_t, a_t)\phi_V(s_t, a_t)^\top$ 
5:     if  $\det(\Sigma_t)$  or  $t$  doubles then
6:       Update model estimate  $\hat{\theta}$  and its confidence region
7:       Call DEVI to update estimate of the value functions
```

Algorithm 2 DEVI

```
1: while  $\|V^{(i)} - V^{(i-1)}\|_\infty \geq \epsilon$  do
2:    $Q^{(i+1)}(\cdot, \cdot) \leftarrow c_\rho(\cdot, \cdot) + (1 - \rho) \min \langle \theta, \phi_{V^{(i)}}(\cdot, \cdot) \rangle$ 
3:    $V^{(i+1)}(\cdot) \leftarrow \min_a Q^{(i+1)}(\cdot, a)$ 
```

- Determinant-doubling + time-step-doubling
- Perturb the transition probability

Linear Mixture SSP: Theory

Theorem (Regret upper bound)

Under technical assumptions, the proposed algorithm LEVIS achieves a $\tilde{\mathcal{O}}(dB_^{1.5} \sqrt{K/c_{\min}})$ regret, where d is the feature dimension, B_* is the cost of the optimal policy, $c_{\min} > 0$ is the lower bound of the per-step cost.*

Linear Mixture SSP: Theory

Theorem (Regret upper bound)

Under technical assumptions, the proposed algorithm LEVIS achieves a $\tilde{O}(dB_^{1.5} \sqrt{K/c_{\min}})$ regret, where d is the feature dimension, B_* is the cost of the optimal policy, $c_{\min} > 0$ is the lower bound of the per-step cost.*

Theorem (Regret lower bound)

Under technical assumptions, any algorithm for linear mixture SSP incurs at least an expected regret of $\Omega(dB_\sqrt{K})$.*

Linear Mixture SSP: Theory

Theorem (Regret upper bound)

Under technical assumptions, the proposed algorithm LEVIS achieves a $\tilde{O}(dB_^{1.5} \sqrt{K/c_{\min}})$ regret, where d is the feature dimension, B_* is the cost of the optimal policy, $c_{\min} > 0$ is the lower bound of the per-step cost.*

Theorem (Regret lower bound)

Under technical assumptions, any algorithm for linear mixture SSP incurs at least an expected regret of $\Omega(dB_\sqrt{K})$.*

- There is a $\sqrt{B_*}$ -gap between the upper and lower bound. How to do better?

Linear Mixture SSP: Near-optimal Regret

- Design Bernstein-type confidence region to reduce the dependence on B_*
 - Similar technique has been used in online/offline RL ([Zhou et al. 2021a](#); [Zhang et al. 2021](#); [Min et al. 2021](#), ...)

Linear Mixture SSP: Near-optimal Regret

- Design Bernstein-type confidence region to reduce the dependence on B_*
 - Similar technique has been used in online/offline RL ([Zhou et al. 2021a](#); [Zhang et al. 2021](#); [Min et al. 2021](#), ...)

Theorem (Near-optimal regret bound)

Under technical assumptions, by using a refined Bernstein-type confidence region in algorithm LEVIS, it can achieve $\tilde{O}(dB_\sqrt{K/c_{\min}})$ regret.*

Linear Mixture SSP: Near-optimal Regret

- Design Bernstein-type confidence region to reduce the dependence on B_*
 - Similar technique has been used in online/offline RL ([Zhou et al. 2021a](#); [Zhang et al. 2021](#); [Min et al. 2021](#), ...)

Theorem (Near-optimal regret bound)

Under technical assumptions, by using a refined Bernstein-type confidence region in algorithm LEVIS, it can achieve $\tilde{O}(dB_\sqrt{K/c_{\min}})$ regret.*

- There is still a remaining gap of $1/\sqrt{c_{\min}}$
- Future work: how to remove the dependence on c_{\min} ?

THANK YOU!

Reference:

AYOUB, A., JIA, Z., SZEPESVARI, C., WANG, M. and YANG, L. (2020). Model-based reinforcement learning with value-targeted regression. In *International Conference on Machine Learning*. PMLR.

CHEN, L., JAFARNIA-JAHROMI, M., JAIN, R. and LUO, H. (2021). Implicit finite-horizon approximation and efficient optimal algorithms for stochastic shortest path. *Advances in Neural Information Processing Systems* **34** 10849–10861.

COHEN, A., EFRONI, Y., MANSOUR, Y. and ROSENBERG, A. (2021). Minimax regret for stochastic shortest path. *Advances in Neural Information Processing Systems* **34** 28350–28361.

MIN, Y., WANG, T., ZHOU, D. and GU, Q. (2021). Variance-aware off-policy evaluation with linear function approximation. *Advances in neural information processing systems* **34** 7598–7610.

ROSENBERG, A., COHEN, A., MANSOUR, Y. and KAPLAN, H. (2020). Near-optimal regret bounds for stochastic shortest path. In *International Conference on Machine Learning*. PMLR.

TARBOURIECH, J., ZHOU, R., DU, S. S., PIROTTA, M., VALKO, M. and LAZARIC, A. (2021). Stochastic shortest path: Minimax, parameter-free and towards horizon-free regret. *Advances in Neural Information Processing Systems* **34** 6843–6855.

VIAL, D., PARULEKAR, A., SHAKKOTTAI, S. and SRIKANT, R. (2021). Regret bounds for stochastic shortest path problems with linear function approximation. *arXiv preprint arXiv:2105.01593* .

ZHANG, Z., YANG, J., JI, X. and DU, S. S. (2021). Improved variance-aware confidence sets for linear bandits and linear mixture mdp. *Advances in Neural Information Processing Systems* **34**.

ZHOU, D., GU, Q. and SZEPESVARI, C. (2021a). Nearly minimax optimal reinforcement learning for linear mixture markov decision processes. In *Conference on Learning Theory*. PMLR.

ZHOU, D., HE, J. and GU, Q. (2021b). Provably efficient reinforcement learning for discounted mdps with feature mapping. In *International Conference on Machine Learning*. PMLR.