
Active Multi-task Representation Learning

Yifang Chen, Simon Du, Kevin Jamieson
University of Washington

Background

▶ Large-scale multi-task pretraining has become a standard approach in
few-shot learning. (e.g. GPT-3, Clip, Bert)

▶ Multi-task can come from different sources, different domains, or
even same sample with multi-labels

Limitation of current methods and our solution

BUT, Using all feasible source tasks is computational costly

Also, Training on target-task-irrelevant tasks may hurt performance but
due to the complexity of large-scale model, deciding the relevance in
advance is difficult and problem-dependent.

Solution:

▶ Learn target-source-task relevance by only using fewer samples from
all source tasks

▶ Train the target model mostly on those relevant source samples.

Limitation of current methods and our solution

BUT, Using all feasible source tasks is computational costly

Also, Training on target-task-irrelevant tasks may hurt performance but
due to the complexity of large-scale model, deciding the relevance in
advance is difficult and problem-dependent.

Solution:

▶ Learn target-source-task relevance by only using fewer samples from
all source tasks

▶ Train the target model mostly on those relevant source samples.

Limitation of current methods and our solution

BUT, Using all feasible source tasks is computational costly

Also, Training on target-task-irrelevant tasks may hurt performance but
due to the complexity of large-scale model, deciding the relevance in
advance is difficult and problem-dependent.

Solution:

▶ Learn target-source-task relevance by only using fewer samples from
all source tasks

▶ Train the target model mostly on those relevant source samples.

Formal problem setup

Multi-task: Given M source tasks and one target task, denoted as task
M + 1, each task m ∈ [M + 1] is associated with a joint distribution µm

over X × Y.

Multi-tasks representation learning:

▶ Each i.i.d sample (x , y) can be represented as y = ϕ∗(x)⊤w∗
m + noise

▶ Shared realizable representation function: Given some function
class Φ, ∃ϕ∗ : X → Z that maps the input to some feature space
Z ∈ RK where K ≪ d .

▶ Task specified linear predictor: For each m ∈ [M], ∃w∗
m ∈ Rk

that maps feature space to output space.

Formal problem setup

Multi-task: Given M source tasks and one target task, denoted as task
M + 1, each task m ∈ [M + 1] is associated with a joint distribution µm

over X × Y.

Multi-tasks representation learning:

▶ Each i.i.d sample (x , y) can be represented as y = ϕ∗(x)⊤w∗
m + noise

▶ Shared realizable representation function: Given some function
class Φ, ∃ϕ∗ : X → Z that maps the input to some feature space
Z ∈ RK where K ≪ d .

▶ Task specified linear predictor: For each m ∈ [M], ∃w∗
m ∈ Rk

that maps feature space to output space.

Formal problem setup

Multi-task: Given M source tasks and one target task, denoted as task
M + 1, each task m ∈ [M + 1] is associated with a joint distribution µm

over X × Y.

Multi-tasks representation learning:

▶ Each i.i.d sample (x , y) can be represented as y = ϕ∗(x)⊤w∗
m + noise

▶ Shared realizable representation function: Given some function
class Φ, ∃ϕ∗ : X → Z that maps the input to some feature space
Z ∈ RK where K ≪ d .

▶ Task specified linear predictor: For each m ∈ [M], ∃w∗
m ∈ Rk

that maps feature space to output space.

Formal problem setup

Multi-task: Given M source tasks and one target task, denoted as task
M + 1, each task m ∈ [M + 1] is associated with a joint distribution µm

over X × Y.

Multi-tasks representation learning:

▶ Each i.i.d sample (x , y) can be represented as y = ϕ∗(x)⊤w∗
m + noise

▶ Shared realizable representation function: Given some function
class Φ, ∃ϕ∗ : X → Z that maps the input to some feature space
Z ∈ RK where K ≪ d .

▶ Task specified linear predictor: For each m ∈ [M], ∃w∗
m ∈ Rk

that maps feature space to output space.

Formal problem setup

Few-shot learning and large-scale pretraining

▶ Fixed and small amount of target samples: We have only a
small, fixed amount of data {x iM+1, y

i
M+1}i∈[nM+1] drawn i.i.d. from

the target task distribution µM+1.

▶ Unlimited access to source samples: At any point during learning
we assume we can obtain an i.i.d. sample from any source task
m ∈ [M] without limit.

▶ Source tasks are diverse enough

Formal problem setup

Few-shot learning and large-scale pretraining

▶ Fixed and small amount of target samples: We have only a
small, fixed amount of data {x iM+1, y

i
M+1}i∈[nM+1] drawn i.i.d. from

the target task distribution µM+1.

▶ Unlimited access to source samples: At any point during learning
we assume we can obtain an i.i.d. sample from any source task
m ∈ [M] without limit.

▶ Source tasks are diverse enough

Formal problem setup

Few-shot learning and large-scale pretraining

▶ Fixed and small amount of target samples: We have only a
small, fixed amount of data {x iM+1, y

i
M+1}i∈[nM+1] drawn i.i.d. from

the target task distribution µM+1.

▶ Unlimited access to source samples: At any point during learning
we assume we can obtain an i.i.d. sample from any source task
m ∈ [M] without limit.

▶ Source tasks are diverse enough

Formal problem setup

Our goal is to use as few total samples from the source tasks (Ntotal) as
possible to learn a representation and linear predictor ϕ,wM+1 that
minimizes the excess risk on the target task defined as

ERM+1(ϕ,w) = LM+1(ϕ,w)− LM+1(ϕ
∗,w∗

M+1)

where LM+1(ϕ,w) = E(x ,y)∼µM+1

[
(⟨ϕ(x),w⟩ − y)2

]
.

And of course, we want to keep same amount of target sample complexity.

Formal problem setup

Our goal is to use as few total samples from the source tasks (Ntotal) as
possible to learn a representation and linear predictor ϕ,wM+1 that
minimizes the excess risk on the target task defined as

ERM+1(ϕ,w) = LM+1(ϕ,w)− LM+1(ϕ
∗,w∗

M+1)

where LM+1(ϕ,w) = E(x ,y)∼µM+1

[
(⟨ϕ(x),w⟩ − y)2

]
.

And of course, we want to keep same amount of target sample complexity.

Summary of contributions

▶ We design active learning algorithm that iteratively samples from
tasks to estimate the source-target-task-relevance and also
simultaneously learn the target model

▶ We prove that when the representation function class is linear, our
algorithm never performs worse than uniform sampling, and can save
up to a factor of M(the number of source tasks), compared with the
naive uniform sampling from all source tasks.

▶ We empirically demonstrate the effectiveness of our active learning
algorithm by testing it on the corrupted MNIST dataset with both
linear and convolutional neural network (CNN) representation
function classes.

Summary of contributions

▶ We design active learning algorithm that iteratively samples from
tasks to estimate the source-target-task-relevance and also
simultaneously learn the target model

▶ We prove that when the representation function class is linear, our
algorithm never performs worse than uniform sampling, and can save
up to a factor of M(the number of source tasks), compared with the
naive uniform sampling from all source tasks.

▶ We empirically demonstrate the effectiveness of our active learning
algorithm by testing it on the corrupted MNIST dataset with both
linear and convolutional neural network (CNN) representation
function classes.

Summary of contributions

▶ We design active learning algorithm that iteratively samples from
tasks to estimate the source-target-task-relevance and also
simultaneously learn the target model

▶ We prove that when the representation function class is linear, our
algorithm never performs worse than uniform sampling, and can save
up to a factor of M(the number of source tasks), compared with the
naive uniform sampling from all source tasks.

▶ We empirically demonstrate the effectiveness of our active learning
algorithm by testing it on the corrupted MNIST dataset with both
linear and convolutional neural network (CNN) representation
function classes.

Theoretical result

Theorem (Informal)
Suppose we know some σ ≥ σmin(W

∗). Under the benign low-dimension linear
representation setting, with proper choice of β, we have ER(B̂, ŵM+1) ≤ ε2 with
probability at least 1− δ whenever

Ntotal ⪆

(
K (M + d) + log

1

δ

)
σ2s∗∥ν∗∥22ε−2 +□σε−1

where □ =
(
MK 2dR/σ3

)√
s∗.

Remarks:

▶ s∗ is the approximate sparsity that we saved compared to passive
learning (which is M)

▶ ν∗ is the target-source relevance. How to estimate this relevance is
the key to achieve this s∗-dependent result.

Experiments - setup

Design:

▶ Original dataset: MNIST-C(orruption) proposed by Mu &Gilmer
(2019), which consists of 16 different types of corruptions applied to
the MNIST test set.

▶ Multi-task data formulation: We divide dataset into 160 tasks by
applying one-hot encoding to 0-9 labels to each corruption type.

▶ Models for representation function: We test both linear and
2-layer ReLU convolutional neural net model and use l2 loss.

Experiments -results

Performance between the adaptive (ada) and the non-adaptive
(non-ada) algorithms.

In linear model, the adaptive algorithm achieves 1.1% higher average
accuracy than the non-adaptive one and results same or better accuracy
in 136 out of 160 tasks. In convnet, it achieves 0.68% higher average
accuracy than the non-adaptive one and results same or better accuracy
in 133 out of 160 tasks.

Thanks!

Hall E 1220, Poster session 2

