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Background

▶ Large-scale multi-task pretraining has become a standard approach in
few-shot learning. (e.g. GPT-3, Clip, Bert)

▶ Multi-task can come from different sources, different domains, or
even same sample with multi-labels



Limitation of current methods and our solution

BUT, Using all feasible source tasks is computational costly

Also, Training on target-task-irrelevant tasks may hurt performance but
due to the complexity of large-scale model, deciding the relevance in
advance is difficult and problem-dependent.

Solution:

▶ Learn target-source-task relevance by only using fewer samples from
all source tasks

▶ Train the target model mostly on those relevant source samples.
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Formal problem setup

Multi-task: Given M source tasks and one target task, denoted as task
M + 1, each task m ∈ [M + 1] is associated with a joint distribution µm

over X × Y.

Multi-tasks representation learning:

▶ Each i.i.d sample (x , y) can be represented as y = ϕ∗(x)⊤w∗
m + noise

▶ Shared realizable representation function: Given some function
class Φ, ∃ϕ∗ : X → Z that maps the input to some feature space
Z ∈ RK where K ≪ d .

▶ Task specified linear predictor: For each m ∈ [M], ∃w∗
m ∈ Rk

that maps feature space to output space.
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Formal problem setup

Few-shot learning and large-scale pretraining

▶ Fixed and small amount of target samples: We have only a
small, fixed amount of data {x iM+1, y

i
M+1}i∈[nM+1] drawn i.i.d. from

the target task distribution µM+1.

▶ Unlimited access to source samples: At any point during learning
we assume we can obtain an i.i.d. sample from any source task
m ∈ [M] without limit.

▶ Source tasks are diverse enough
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Formal problem setup

Our goal is to use as few total samples from the source tasks (Ntotal) as
possible to learn a representation and linear predictor ϕ,wM+1 that
minimizes the excess risk on the target task defined as

ERM+1(ϕ,w) = LM+1(ϕ,w)− LM+1(ϕ
∗,w∗

M+1)

where LM+1(ϕ,w) = E(x ,y)∼µM+1

[
(⟨ϕ(x),w⟩ − y)2

]
.

And of course, we want to keep same amount of target sample complexity.
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Summary of contributions

▶ We design active learning algorithm that iteratively samples from
tasks to estimate the source-target-task-relevance and also
simultaneously learn the target model

▶ We prove that when the representation function class is linear, our
algorithm never performs worse than uniform sampling, and can save
up to a factor of M( the number of source tasks), compared with the
naive uniform sampling from all source tasks.

▶ We empirically demonstrate the effectiveness of our active learning
algorithm by testing it on the corrupted MNIST dataset with both
linear and convolutional neural network (CNN) representation
function classes.
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Theoretical result

Theorem (Informal)
Suppose we know some σ ≥ σmin(W

∗). Under the benign low-dimension linear
representation setting, with proper choice of β, we have ER(B̂, ŵM+1) ≤ ε2 with
probability at least 1− δ whenever

Ntotal ⪆

(
K (M + d) + log

1

δ

)
σ2s∗∥ν∗∥22ε−2 +□σε−1

where □ =
(
MK 2dR/σ3

)√
s∗.

Remarks:

▶ s∗ is the approximate sparsity that we saved compared to passive
learning (which is M)

▶ ν∗ is the target-source relevance. How to estimate this relevance is
the key to achieve this s∗-dependent result.



Experiments - setup

Design:

▶ Original dataset: MNIST-C(orruption) proposed by Mu &Gilmer
(2019), which consists of 16 different types of corruptions applied to
the MNIST test set.

▶ Multi-task data formulation: We divide dataset into 160 tasks by
applying one-hot encoding to 0-9 labels to each corruption type.

▶ Models for representation function: We test both linear and
2-layer ReLU convolutional neural net model and use l2 loss.



Experiments -results

Performance between the adaptive (ada) and the non-adaptive
(non-ada) algorithms.

In linear model, the adaptive algorithm achieves 1.1% higher average
accuracy than the non-adaptive one and results same or better accuracy
in 136 out of 160 tasks. In convnet, it achieves 0.68% higher average
accuracy than the non-adaptive one and results same or better accuracy
in 133 out of 160 tasks.
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