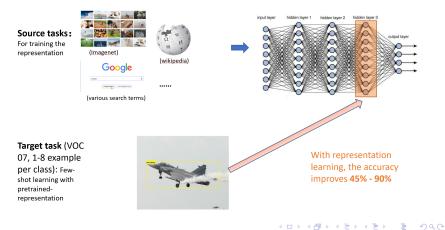
Active Multi-task Representation Learning

Yifang Chen, Simon Du, Kevin Jamieson University of Washington

Background

- Large-scale multi-task pretraining has become a standard approach in few-shot learning. (e.g. GPT-3, Clip, Bert)
- Multi-task can come from different sources, different domains, or even same sample with multi-labels



Limitation of current methods and our solution

BUT, Using all feasible source tasks is computational costly

Limitation of current methods and our solution

BUT, Using all feasible source tasks is computational costly

Also, Training on target-task-irrelevant tasks may hurt performance but due to the complexity of large-scale model, deciding the relevance in advance is difficult and problem-dependent.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Limitation of current methods and our solution

BUT, Using all feasible source tasks is computational costly

Also, Training on target-task-irrelevant tasks may hurt performance but due to the complexity of large-scale model, deciding the relevance in advance is difficult and problem-dependent.

Solution:

- Learn target-source-task relevance by only using fewer samples from all source tasks
- ► Train the target model mostly on those relevant source samples.

Multi-task: Given M source tasks and one target task, denoted as task M + 1, each task $m \in [M + 1]$ is associated with a joint distribution μ_m over $\mathcal{X} \times \mathcal{Y}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Multi-task: Given M source tasks and one target task, denoted as task M + 1, each task $m \in [M + 1]$ is associated with a joint distribution μ_m over $\mathcal{X} \times \mathcal{Y}$.

Multi-tasks representation learning:

• Each i.i.d sample (x, y) can be represented as $y = \phi^*(x)^\top w_m^* + \text{noise}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Multi-task: Given M source tasks and one target task, denoted as task M + 1, each task $m \in [M + 1]$ is associated with a joint distribution μ_m over $\mathcal{X} \times \mathcal{Y}$.

Multi-tasks representation learning:

- Each i.i.d sample (x, y) can be represented as $y = \phi^*(x)^\top w_m^* + \text{noise}$
- ▶ Shared realizable representation function: Given some function class Φ , $\exists \phi^* : \mathcal{X} \to \mathcal{Z}$ that maps the input to some feature space $\mathcal{Z} \in \mathbb{R}^K$ where $K \ll d$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Multi-task: Given M source tasks and one target task, denoted as task M + 1, each task $m \in [M + 1]$ is associated with a joint distribution μ_m over $\mathcal{X} \times \mathcal{Y}$.

Multi-tasks representation learning:

- Each i.i.d sample (x, y) can be represented as $y = \phi^*(x)^\top w_m^* + \text{noise}$
- Shared realizable representation function: Given some function class Φ, ∃φ*: X → Z that maps the input to some feature space Z ∈ ℝ^K where K ≪ d.
- ▶ Task specified linear predictor: For each $m \in [M]$, $\exists w_m^* \in \mathbb{R}^k$ that maps feature space to output space.

Few-shot learning and large-scale pretraining

► Fixed and small amount of target samples: We have only a small, fixed amount of data {xⁱ_{M+1}, yⁱ_{M+1}}_{i∈[n_{M+1}]} drawn i.i.d. from the target task distribution µ_{M+1}.

Few-shot learning and large-scale pretraining

- ► Fixed and small amount of target samples: We have only a small, fixed amount of data {xⁱ_{M+1}, yⁱ_{M+1}}_{i∈[n_{M+1}]} drawn i.i.d. from the target task distribution µ_{M+1}.
- ► Unlimited access to source samples: At any point during learning we assume we can obtain an i.i.d. sample from any source task m ∈ [M] without limit.

Few-shot learning and large-scale pretraining

- ► Fixed and small amount of target samples: We have only a small, fixed amount of data {xⁱ_{M+1}, yⁱ_{M+1}}_{i∈[n_{M+1}]} drawn i.i.d. from the target task distribution µ_{M+1}.
- ► Unlimited access to source samples: At any point during learning we assume we can obtain an i.i.d. sample from any source task m ∈ [M] without limit.

Source tasks are diverse enough

Our goal is to use as few total samples from the source tasks (N_{total}) as possible to learn a representation and linear predictor ϕ , w_{M+1} that minimizes the excess risk on the target task defined as

$$\mathsf{ER}_{M+1}(\phi, w) = L_{M+1}(\phi, w) - L_{M+1}(\phi^*, w^*_{M+1})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where
$$L_{M+1}(\phi, w) = \mathbb{E}_{(x,y) \sim \mu_{M+1}} \left[\left(\langle \phi(x), w \rangle - y \right)^2 \right].$$

Our goal is to use as few total samples from the source tasks (N_{total}) as possible to learn a representation and linear predictor ϕ , w_{M+1} that minimizes the excess risk on the target task defined as

$$\mathsf{ER}_{M+1}(\phi, w) = L_{M+1}(\phi, w) - L_{M+1}(\phi^*, w^*_{M+1})$$

where
$$L_{M+1}(\phi, w) = \mathbb{E}_{(x,y) \sim \mu_{M+1}} \left[\left(\langle \phi(x), w \rangle - y \right)^2 \right].$$

And of course, we want to keep same amount of target sample complexity.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Summary of contributions

We design active learning algorithm that iteratively samples from tasks to estimate the source-target-task-relevance and also simultaneously learn the target model

Summary of contributions

- We design active learning algorithm that iteratively samples from tasks to estimate the source-target-task-relevance and also simultaneously learn the target model
- We prove that when the representation function class is linear, our algorithm never performs worse than uniform sampling, and can save up to a factor of *M*(the *number of source tasks*), compared with the naive uniform sampling from all source tasks.

Summary of contributions

- We design active learning algorithm that iteratively samples from tasks to estimate the source-target-task-relevance and also simultaneously learn the target model
- We prove that when the representation function class is linear, our algorithm never performs worse than uniform sampling, and can save up to a factor of *M*(the *number of source tasks*), compared with the naive uniform sampling from all source tasks.
- We empirically demonstrate the effectiveness of our active learning algorithm by testing it on the corrupted MNIST dataset with both linear and convolutional neural network (CNN) representation function classes.

Theoretical result

Theorem (Informal)

Suppose we know some $\underline{\sigma} \geq \sigma_{\min}(W^*)$. Under the benign low-dimension linear representation setting, with proper choice of β , we have $\text{ER}(\hat{B}, \hat{w}_{M+1}) \leq \varepsilon^2$ with probability at least $1 - \delta$ whenever

$$N_{total} \gtrsim \left(K(M+d) + \log rac{1}{\delta}
ight) \sigma^2 s^* \|
u^* \|_2^2 arepsilon^{-2} + \Box \sigma arepsilon^{-1}$$

where $\Box = (MK^2 dR / \underline{\sigma}^3) \sqrt{s^*}$.

Remarks:

- s* is the approximate sparsity that we saved compared to passive learning (which is M)
- ν* is the target-source relevance. How to estimate this relevance is the key to achieve this s*-dependent result.

Experiments - setup

Design:

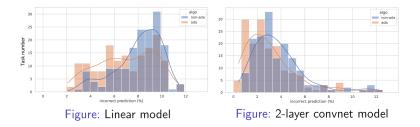
- Original dataset: MNIST-C(orruption) proposed by Mu &Gilmer (2019), which consists of 16 different types of corruptions applied to the MNIST test set.
- Multi-task data formulation: We divide dataset into 160 tasks by applying one-hot encoding to 0-9 labels to each corruption type.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

► Models for representation function: We test both linear and 2-layer ReLU convolutional neural net model and use *l*₂ loss.

Experiments -results

Performance between the adaptive (ada) and the non-adaptive (non-ada) algorithms.



In linear model, the adaptive algorithm achieves 1.1% higher average accuracy than the non-adaptive one and results same or better accuracy in 136 out of 160 tasks. In convnet, it achieves 0.68% higher average accuracy than the non-adaptive one and results same or better accuracy in 133 out of 160 tasks.

Thanks!

Hall E 1220, Poster session 2