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Instrumental Variable (IV) Setting

We consider the following structural causal model M°

Z = €z 7
U= €y N
0 g° e Uree
X =8 (Za U7 6X) 'S }’ \\
Y = fO(X) + h°(U, ey) X Fo— ¥

where Z € R" are instruments, U € R9 are unobserved variables, X € RY are
predictors, Y € R is a response, and (ez, €y, €x, €y) are jointly independent noise
variables. The causal function O satisfies independence restriction Y — fO(X) 1. Z.



Identification of f°: Moment restriction vs Independence restriction

E.g., consider a linear causal function f(x) = x "6° for some #° € RY.

Classical IV approach Independence-based IV ——
Identification of O is based on Identification of 0 is based on
the (conditional) moment restriction: the independence restriction:
E[Y - X8| Z]=0. (1) Yy -Xx"o 1 z (2)
O is not identifiable when E[X | Z] = 0. |We can identify O even if E[X | Z] = 0.
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The independence restriction (2) yields

(i) Strictly stronger identifiability results.

(ii) (in some settings) More efficient estimators (e.g., under weak instruments).




Independence-based IV with HSIC

Given (X, Y,Z), our method aims to find a function f that minimizes the dependency
between the residuals ¥ — f(X) and the instruments Z.

We propose the HSIC-X (‘X' for ‘exogenous’) estimator:

f = argmin I-TSE(Y — f(X), Z2), (3)
feF
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Two heuristics to alleviate the non-convexity issue:

(i) Initialize the parameters in the first trial at the OLS/2SLS solutions.

(ii) Restarting heuristic: Test for the independence restriction at the solution. If the
test is rejected, randomly re-initialize the parameters and restart the optimization.



Under-identified IV and Distribution Generalization

In the under-identified case when Z is not rich enough to identify °, we can still get a
meaningful estimator where we find the most predictive invariant function.
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Theorem [Generalization to interventions on Z]

Let £ : R — R be a convex loss function and Z be a set of interventions on Z. If

the interventions Z is ‘strong enough’, then

Jnf Eyyo (Y — £(X))] = inf. sup Emon)[€(Y — (X))], (4)

where Finy = {f, € F| Z 1L Y — £,(X) under Ppp0} is the space of invariant

functions.



Under-identified IV and Distribution Generalization

Motivated by (4), we propose the HSIC-X-pen (‘pen’ for ‘penalization’) estimator:

£ = argmin HSIC(Y — £(X), Z)) + AX20, (Y — F(X))), (5)
feF

where the tuning parameter A € [0, 00) is selected as the largest possible value for
which an HSIC-based independence test between the residuals and the instruments is
not rejected.



Contributions

Three contributions:

(i) We discuss the use of the independence restriction Y — f(X) 1L Z in IV
estimation and its implication on the identifiability of £°.

(ii) We propose HSIC-X, a gradient-based learning method that exploits the
independence restriction to estimate ° and prove its consistency.

(iii) We propose to use the independence restriction for distribution generalization and
prove theoretical guarantees.

Have some questions? See you all at the poster session: Tue 19 Jul 6:30 p.m.




