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Instrumental Variable (IV) Setting

We consider the following structural causal model M0

Z := ϵZ

U := ϵU

X := g0(Z ,U, ϵX )

Y := f 0(X ) + h0(U, ϵY ) YX

Z

f 0

g0 U

where Z ∈ Rr are instruments, U ∈ Rq are unobserved variables, X ∈ Rd are

predictors, Y ∈ R is a response, and (ϵZ , ϵU , ϵX , ϵY ) are jointly independent noise

variables. The causal function f 0 satisfies independence restriction Y − f 0(X ) ⊥⊥ Z .



Identification of f 0: Moment restriction vs Independence restriction

E.g., consider a linear causal function f 0(x) = x⊤θ0 for some θ0 ∈ Rd .

Classical IV approach

Identification of f 0 is based on

the (conditional) moment restriction:

E[Y − X⊤θ | Z ] = 0. (1)

f 0 is not identifiable when E[X | Z ] = 0.

Independence-based IV

Identification of f 0 is based on

the independence restriction:

Y − X⊤θ ⊥⊥ Z . (2)

We can identify f 0 even if E[X | Z ] = 0.

The independence restriction (2) yields

(i) Strictly stronger identifiability results.

(ii) (in some settings) More efficient estimators (e.g., under weak instruments).
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Independence-based IV with HSIC

Given (X ,Y ,Z ), our method aims to find a function f̂ that minimizes the dependency

between the residuals Y − f̂ (X ) and the instruments Z .

We propose the HSIC-X (‘X’ for ‘exogenous’) estimator:

f̂ := argmin
f ∈F

ĤSIC(Y − f (X ),Z ), (3)

Two heuristics to alleviate the non-convexity issue:

(i) Initialize the parameters in the first trial at the OLS/2SLS solutions.

(ii) Restarting heuristic: Test for the independence restriction at the solution. If the

test is rejected, randomly re-initialize the parameters and restart the optimization.
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Under-identified IV and Distribution Generalization

In the under-identified case when Z is not rich enough to identify f 0, we can still get a

meaningful estimator where we find the most predictive invariant function.

Theorem [Generalization to interventions on Z]

Let ℓ : R → R be a convex loss function and I be a set of interventions on Z . If

the interventions I is ‘strong enough’, then

inf
f ∈Finv

EM0

[
ℓ(Y − f (X ))

]
= inf

f ∈F
sup
i∈I

EM0(i)

[
ℓ(Y − f (X ))

]
, (4)

where Finv := {f⋄ ∈ F | Z ⊥⊥ Y − f⋄(X ) under PM0} is the space of invariant

functions.
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Under-identified IV and Distribution Generalization

Motivated by (4), we propose the HSIC-X-pen (‘pen’ for ‘penalization’) estimator:

f̂ λ = argmin
f ∈F

ĤSIC(Y − f (X ),Z )) + λ
∑n

i=1 ℓ(Yi − f (Xi )), (5)

where the tuning parameter λ ∈ [0,∞) is selected as the largest possible value for

which an HSIC-based independence test between the residuals and the instruments is

not rejected.



Contributions

Three contributions:

(i) We discuss the use of the independence restriction Y − f (X ) ⊥⊥ Z in IV

estimation and its implication on the identifiability of f 0.

(ii) We propose HSIC-X, a gradient-based learning method that exploits the

independence restriction to estimate f 0 and prove its consistency.

(iii) We propose to use the independence restriction for distribution generalization and

prove theoretical guarantees.
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