Partial and Asymmetric Contrastive Learning for Out-of-Distribution Detection in Long-Tailed Recognition Haotao Wang¹ Aston Zhang² Yi Zhu² Shuai Zheng² Mu Li² Alex Smola² Zhangyang Wang¹ ¹University of Texas at Austin, ²Amazon Web Services ### Out-of-Distribution (OOD) Detection (unseen category) ## Out-of-Distribution (OOD) Detection Test sample: bird (unseen category) In-distribution classification loss Out-of-distribution detection loss **Previous solutions:** $$\mathcal{L} = \mathbb{E}_{x \sim \mathcal{D}_{in}}[\mathcal{L}_{in}(x)] + \lambda \mathbb{E}_{x \sim \mathcal{D}_{out}}[\mathcal{L}_{out}(x)]$$ For example, in Outlier Exposure (OE)[1]: $$\mathcal{L}_{\mathrm{out}}(x) = \mathrm{KL}(f(x) \| u)$$ Softmax probability Uniform distribution Categories included in the training set (in-distribution data) Head-classes: Well-represented in training set; high prediction confidence. Tail-classes: Underrepresented in training set; low prediction confidence. Class index Categories excluded in the training set (out-of-distribution data) OOD samples: Expected to have low prediction confidence. #### Results on a head-class in CIFAR100-LT. #### Results on a tail-class in CIFAR100-LT. Tail-class samples have lower prediction confidence and tend to be misclassified as OOD samples. Outlier Exposure (OE) on CIFAR10 Tail classes heavily Head classes are overlap with OOD well-separated from samples. OOD samples. airplane frog automobile horse bird ship cat truck deer OOD dog Outlier Exposure (OE) on CIFAR10-LT (long-tailed version of CIFAR10) Existing OOD detection methods suffer significant performance drop when trained on long-tailed datasets. | Method | Dataset | AUROC (†) | AUPR (†) | FPR95 (↓) | ACC (†) | |----------|------------|----------------|----------------|------------------|----------------| | NT | CIFAR10 | 85.86 | 84.37 | 52.52 | 93.45 | | (MSP) | CIFAR10-LT | 72.28 (-13.58) | 70.27 (-14.10) | 66.07 (+13.55) | 72.34 (-21.11) | | OE | CIFAR10 | 96.68 | 96.29 | 14.59 | 92.81 | | | CIFAR10-LT | 89.92 (-6.75) | 87.71 (-8.58) | 34.80 (+20.21) | 73.30 (-19.51) | | EnergyOE | CIFAR10 | 96.59 | 96.37 | 14.80 | 93.07 | | | CIFAR10-LT | 89.31 (-7.27) | 88.92 (-7.45) | 40.88 (+26.08) | 74.68 (-18.39) | | SOFL | CIFAR10 | 96.74 | 96.60 | 14.57 | 89.13 | | | CIFAR10-LT | 91.13 (-5.61) | 90.49 (-6.10) | 34.98 (+20.41) | 54.42 (-34.71) | | OECC | CIFAR10 | 96.27 | 95.41 | 14.77 | 91.95 | | | CIFAR10-LT | 87.28 (-8.99) | 86.29 (-9.12) | 45.24 (+30.47) | 60.16 (-31.79) | | NTOM | CIFAR10 | 96.92 | 96.95 | 14.95 | 91.44 | | | CIFAR10-LT | 92.89 (-4.03) | 92.31 (-4.65) | 29.03 (+14.09) | 66.41 (-25.03) | ### OOD Detection on Long-Tailed Dataset Naively combining OOD detection methods with long-tail recognition (LTR) methods doesn't bring significant gains. | $\mathcal{D}_{ ext{in}}$ | OOD
Detection
Method | | LTR
Method | AUROC (†) | AUPR (†) | FPR95 (↓) | ACC (†) | |--------------------------|----------------------------|---|---------------|--------------------|-------------------------|-------------------------|--------------------| | | | | None | 89.92 | 87.71 | 34.80 | 73.30 | | CIFAR | OE | | Re-weighting | 89.34 | 86.39 | 37.09 | 70.35 | | 10-LT | OE | + | au-norm | 89.58 | 85.88 | 33.80 | 73.33 | | 10-L1 | | | LA | 89.46 | 86.39 | 34.94 | <u>73.93</u> | | | Our method | | | 90.99 ±0.19 | 89.24 ±0.34 | 33.36 ±0.79 | 77.08 ±1.01 | | | | | None | 72.62 | 66.73 | 68.69 | 39.33 | | CIFAR | OE | | Re-weighting | 72.07 | 66.05 | 70.62 | 39.42 | | 100-LT | OE | + | au-norm | <u>72.71</u> | 66.59 | <u>68.04</u> | 40.87 | | 100-L1 | | | LA | 72.56 | 66.48 | 68.24 | <u>42.06</u> | | | Our method | | ethod | 73.32 ± 0.32 | 67.18 \pm 0.10 | 67.44 \pm 0.58 | 43.10 ± 0.47 | OOD detection methods: Discourage over-confident predictions on rare samples. LTR methods: Encourage confident predictions on rare samples. #### Our solution: - 1. Explicitly distinguish tail-class in-distribution samples from OOD samples. - 2. Disentangle the model to two branches (sharing most parameters): One for OOD detection, and the other for in-distribution classification (LTR). # Partial and Asymmetric Supervised Contrastive Learning (PASCL) ### Partiality - We apply contrastive learning only on tail-class in-distribution and OOD data, not headclass in-distribution data. - Intuition: As shown previously, head-class in-distribution samples can be easily separated from the OOD samples, so we do not use an extra contrastive learning loss to explicitly push them away. #### Asymmetry - We pull in-distribution samples within the same class together, but do not pull OOD samples together. - Intuition: OOD training set typically has huge diversity in order to be representative for the open visual world, and thus the OOD training samples are not necessarily from the same class. ### Auxiliary Branch Finetuning (ABF) #### Intuition: - 1. In-distribution and out-of-distribution samples have different underlying distributions. - 2. It is challenging to achieve anomaly detection and long-tailed in-distribution classification using a shared classification head. [3] Intriguing properties of adversarial training at scale. In ICLR, 2020. ## Auxiliary Branch Finetuning (ABF) $$\mathbb{E}_{x \sim \mathcal{D}_{in}}[\mathcal{L}_{in}^{LA}(x)]. \tag{5}$$ Stage 2: Finetune BN and FC layers in auxiliary branch using logit-adjustment (LA) cross-entropy loss [2] on indistribution data. # **Algorithm 1** Partial and Asymmetric Supervised Contrastive Learning (PASCL) **Input:** in-distribution training set \mathcal{D}_{in} , OOD training set \mathcal{D}_{out} , main branch training iteration n_1 , auxiliary branch finetuning iteration n_2 . #Stage 1: Train main branch. for i=1 to n_1 do Sample a batch of in-distribution and OOD training samples. Update the main branch model by minimizing Eq. (4) #### end for #Stage 2: Finetune auxiliary branch. Fix all layers except the auxiliary BN and classification layers in the model. for i = 1 to n_2 do Sample a batch of in-distribution training samples. Update the auxiliary BN and classification layers by minimizing Eq. (5). end for ### Results on CIFAR10-LT (a) OOD detection results and in-distribution classification results in terms of ACC95. | $\mathcal{D}_{ ext{out}}^{ ext{test}}$ | Method | AUROC (†) | AUPR (†) | FPR95 (↓) | ACC95 (↑) | |--|------------|--------------------------------------|--------------------------------------|----------------------------------|-------------------------------------| | Texture | OE | 92.59 ± 0.42 | 83.32 ± 1.67 | 25.10 ± 1.08 | 84.52 ± 0.76 | | | Ours | 93.16 ± 0.37 | 84.80 ± 1.50 | 23.26 ± 0.91 | 85.86 ± 0.72 | | SVHN | OE | 95.10 ± 1.01 | 97.14 ± 0.81 | 16.15 ± 1.52 | 81.33 ± 0.81 | | | Ours | 96.63 ± 0.90 | 98.06 ± 0.56 | 12.18 ± 3.33 | 82.72 ± 1.51 | | CIFAR100 | OE
Ours | 83.40 ± 0.30
84.43 ± 0.23 | 80.93 ± 0.57
82.99 ± 0.48 | 56.96 ± 0.91 57.27 ± 0.88 | 94.56 ± 0.57
94.48 ± 0.31 | | Tiny | OE | 86.14 ± 0.29 | 79.33 ± 0.65 | 47.78 ± 0.72 | 91.19 ± 0.33 | | ImageNet | Ours | 87.14 ± 0.18 | 81.54 ±0.38 | 47.69 ± 0.59 | 91.20 ± 0.35 | | LSUN | OE | 91.35 ± 0.23 | 87.62 ± 0.82 | 27.86 ± 0.68 | 85.49 ± 0.69 | | | Ours | 93.17 ± 0.15 | 91.76 ± 0.53 | 26.40 ± 1.00 | 86.67 ± 0.90 | | Places365 | OE | 90.07 ± 0.26 | 95.15 ± 0.24 | 34.04 ± 0.91 | 87.07 ± 0.53 | | | Ours | 91.43 ± 0.17 | 96.28 ± 0.14 | 33.40 ± 0.88 | 87.87 ± 0.71 | | Average | OE | 89.77 ± 0.27 | 87.25 ± 0.61 | 34.65 ± 0.46 | 87.36 ± 0.51 | | | Ours | 90.99 ± 0.19 | 89.24 ± 0.34 | 33.36 ± 0.79 | 88.13 ± 0.56 | #### (b) In-distribution classification results in terms of ACC@FPRn. | Method | | ACC@F | FPRn (†) | | |--------|--------------------------------------|------------------|------------------|------------------| | Method | 0 | 0.001 | 0.01 | 0.1 | | OE | 73.84 ± 0.77 | 73.90 ± 0.77 | 74.46 ± 0.81 | 78.88 ± 0.66 | | Ours | 73.84 ± 0.77
77.08 ± 1.01 | 77.13 ± 1.02 | 77.64 ± 0.99 | 81.96 ± 0.85 | #### (c) Comparison with other methods. | $\mathcal{D}_{ ext{out}}^{ ext{test}}$ | Method | AUROC (†) | AUPR (†) | FPR95 (↓) | ACC (↑) | |--|----------|------------------|------------------|------------------|------------------| | | ST (MSP) | 72.28 | 70.27 | 66.07 | 72.34 | | | OECC | 87.28 | 86.29 | 45.24 | 60.16 | | Avaraga | EnergyOE | 89.31 | 88.92 | 40.88 | 74.68 | | Average | OE | 89.77 ± 0.27 | 87.25 ± 0.61 | 34.65 ± 0.46 | 73.84 ± 0.77 | | | Ours | 90.99 ± 0.19 | 89.24 ± 0.34 | 33.36 ± 0.79 | 77.08 ± 1.01 | ### Results on CIFAR100-LT (a) OOD detection results and in-distribution classification results in terms of ACC95. | $\mathcal{D}_{ ext{out}}^{ ext{test}}$ | Method | AUROC (†) | AUPR (↑) | FPR95 (↓) | ACC95 (†) | |--|--------|---------------------|---------------------|------------------|-------------------------| | Texture | OE | 76.71 ± 1.20 | 58.79 ± 1.39 | 68.28 ± 1.53 | 71.43 ± 1.58 | | Texture | Ours | 76.01 ± 0.66 | 58.12 ± 1.06 | 67.43 ± 1.93 | 73.11 ± 1.55 | | SVHN | OE | 77.61 ± 3.26 | 86.82 ± 2.50 | 58.04 ± 4.82 | 64.27 ± 3.26 | | SVHN | Ours | 80.19 ± 2.19 | 88.49 ± 1.59 | 53.45 ± 3.60 | 64.50 ± 1.87 | | CIEAD10 | OE | 62.23 ± 0.30 | 57.57 ± 0.34 | 80.64 ± 0.98 | 82.67 ± 0.99 | | CIFAR10 | Ours | 62.33 ± 0.38 | 57.14 ± 0.20 | 79.55 ± 0.84 | 82.30 ± 1.07 | | Tiny | OE | 68.04 ± 0.37 | 51.66 ± 0.51 | 76.66 ± 0.47 | 76.22 ± 0.61 | | ImageNet | Ours | 68.20 ± 0.37 | 51.53 ± 0.42 | 76.11 ± 0.80 | 77.56 ± 1.15 | | LSUN | OE | 77.10 ± 0.64 | 61.42 ± 0.99 | 63.98 ± 1.38 | 65.64 ± 1.03 | | LSUN | Ours | 77.19 ± 0.44 | 61.27 ± 0.72 | 63.31 ± 0.87 | 68.05 ± 1.24 | | Places365 | OE | 75.80 ± 0.45 | 86.68 ± 0.38 | 65.72 ± 0.92 | 67.04 ± 0.49 | | Places303 | Ours | 76.02 ± 0.21 | 86.52 ± 0.29 | 64.81 ± 0.27 | 69.04 ± 0.90 | | Ахганада | OE | 72.91 ± 0.68 | 67.16 ± 0.57 | 68.89 ± 1.07 | 71.21 ± 0.84 | | Average | Ours | 73.32 ± 0.32 | 67.18 ± 0.10 | 67.44 ± 0.58 | 72.43 \pm 0.66 | #### (b) in-distribution classification results in terms of ACC@FPRn. | | Mathad | | ACC@I | FPRn (†) | | |---|------------|---|-------|--------------------------------------|-----| | | Method | 0 | 0.001 | 0.01 | 0.1 | | - | OE
Ours | 1 | | 39.38 ± 0.38
43.39 ± 0.48 | | #### (c) Comparison with other methods. | $\mathcal{D}_{ ext{out}}^{ ext{test}}$ | Method | AUROC (†) | AUPR (↑) | FPR95 (↓) | ACC (↑) | |--|----------|------------------|------------------|------------------|------------------| | | ST (MSP) | 61.00 | 57.54 | 82.01 | 40.97 | | | OECC | 70.38 | 66.87 | 73.15 | 32.93 | | Axionopo | EnergyOE | 71.10 | 67.23 | 71.78 | 39.05 | | Average | OE | 72.91 ± 0.68 | 67.16 ± 0.57 | 68.89 ± 1.07 | 39.04 ± 0.37 | | | Ours | 73.32 ± 0.32 | 67.18 ± 0.10 | 67.44 ± 0.58 | 43.10 ± 0.47 | ## Results on ImageNet-LT | $\mathcal{D}_{ ext{out}}^{ ext{test}}$ | Mothod | AUROC (†) | ALIDD (4) | FPR@TPR $n(\downarrow)$ | | | $ACC@TPRn (\uparrow)$ | | | $ACC@FPRn (\uparrow)$ | | | | | | | | |--|----------|-----------|-----------|-------------------------|--------------|--------------|-----------------------|---------|--------------|-----------------------|--------------|---------|---------|----------------|---------|--|--| | out | Method | AUROC (1) | AUPR (†) | 0.98 | 0.95 | 0.90 | 0.80 | 0.98 | 0.95 | 0.90 | 0.80 | 0 | 0.001 | 0.001 0.01 0.1 | | | | | | ST (MSP) | 53.81 | 51.63 | 95.38 | 90.15 | 83.52 | 72.97 | 96.67 | 92.61 | 87.43 | 77.52 | 39.65 | 39.68 | 40.00 | 43.18 | | | | 1 | OECC | 63.07 | 63.05 | 93.15 | 86.90 | 78.79 | 65.23 | 94.25 | 88.23 | 80.12 | 68.36 | 38.25 | 38.28 | 38.56 | 41.47 | | | | ImageNet | EnergyOE | 64.76 | 64.77 | 94.15 | 87.72 | <u>78.36</u> | <u>63.71</u> | 80.18 | 74.38 | 67.65 | 59.68 | 38.50 | 38.52 | 38.72 | 40.99 | | | | -1k-OOD | OE | 66.33 | 68.29 | 95.11 | 88.22 | 78.68 | 65.28 | 95.46 | 88.22 | 78.68 | 65.28 | 37.60 | 37.62 | 37.79 | 40.00 | | | | 1 | Ours | 68.00 | 70.15 | 94.38 | <u>87.53</u> | 78.12 | 62.48 | 95.69 | <u>89.55</u> | 80.88 | <u>69.60</u> | 45.49 | 45.51 | 45.62 | 47.49 | | | | | Ours | (+1.67) | (+1.86) | (-0.73) | (-0.69) | (-0.56) | (-2.80) | (+0.23) | (+1.33) | (+2.20) | (+4.32) | (+7.89) | (+7.89) | (+7.83) | (+7.49) | | | ## Ablation study on each component in PASCL | | A | nmetry Partiality ABF AUROC (†) AUPR (†) FP | EDD05 (1) | FPR95 (↓) ACC95 (↑) | $ACC@FPRn (\uparrow)$ | | | | | | | |-------------|--------------------------|---|-----------|-----------------------|-----------------------|------------------|-------------------------|------------------|------------------|---------------------|------------------| | CIFAR10-LT | Asymmetry | Asymmetry Partiality | | AUROC (†) | AUPR (↑) | FPK95 (\psi) | ACC95 (†) | 0 | 0.001 | 0.01 | 0.1 | | | No contrastive loss (OE) | | | 95.10 ± 1.01 | 97.14 ± 0.81 | 16.15 ± 1.52 | 81.33 ± 0.81 | 73.84 ± 0.77 | 73.90 ± 0.77 | 74.46 ± 0.81 | 78.88 ± 0.66 | | | × | × | X | 95.34 ± 1.58 | 97.30 ± 1.20 | 15.12 ± 3.07 | 81.94 ± 1.28 | 75.03 ± 1.46 | 75.09 ± 1.45 | 75.60 ± 1.44 | 80.02 ± 1.10 | | CIEAD 10 LT | × | ✓ | X | 95.01 ± 1.25 | 96.74 ± 0.78 | 15.31 ± 4.35 | 82.34 ± 1.56 | 74.46 ± 1.80 | 74.52 ± 1.80 | 75.04 ± 1.76 | 80.21 ± 0.99 | | CIFAR10-LI | ✓ | × | X | 94.91 ± 1.43 | 96.86 ± 1.47 | 15.57 ± 1.19 | 82.08 ± 0.47 | 75.24 ± 0.99 | 75.29 ± 0.98 | 75.77 ± 0.98 | 79.85 ± 0.77 | | | ✓ | ✓ | X | 96.63 ± 0.90 | 98.06 ± 0.56 | 12.18 ± 3.33 | 81.70 ± 1.21 | 76.20 ± 0.79 | 76.26 ± 0.79 | 76.85 ± 0.81 | 81.07 ± 0.58 | | | ✓ | ✓ | ✓ | 96.63 ± 0.90 | 98.06 ± 0.56 | 12.18 ± 3.33 | 82.72 ± 1.51 | 77.08 ± 1.01 | 77.13 ± 1.02 | 77.64 ± 0.99 | 81.96 ± 0.85 | | | No contra | stive loss (C | DE) | 77.61 ± 3.26 | 86.82 ± 2.50 | 58.04 ± 4.82 | 64.27 ± 3.26 | 39.04 ± 0.37 | 39.07 ± 0.38 | 39.38 ± 0.38 | 42.40 ± 0.44 | | | × | × | X | 78.05 ± 2.12 | 87.18 ± 0.87 | 59.10 ± 5.03 | 66.44 \pm 3.90 | 40.21 ± 0.43 | 40.25 ± 0.43 | 40.56 ± 0.45 | 43.71 ± 0.42 | | CIFAR100-LT | × | ✓ | X | 79.46 ± 1.83 | 88.01 ± 1.90 | 54.59 ± 3.34 | 63.86 ± 2.52 | 40.24 ± 0.53 | 40.28 ± 0.53 | 40.60 ± 0.55 | 43.93 ± 0.57 | | CIFAR100-LI | ✓ | × | X | 79.54 ± 2.38 | 87.68 ± 1.51 | 54.27 ± 3.69 | 63.33 ± 2.87 | 40.00 ± 0.42 | 40.04 ± 0.41 | 40.36 ± 0.42 | 43.60 ± 0.42 | | | ✓ | ✓ | X | 80.19 ± 2.19 | 88.49 ± 1.59 | 53.45 ± 3.60 | 63.10 ± 1.87 | 40.33 ± 0.20 | 40.36 ± 0.20 | 40.66 ± 0.18 | 43.79 ± 0.22 | | | ✓ | ✓ | ✓ | 80.19 ± 2.19 | 88.49 ± 1.59 | 53.45 ± 3.60 | 64.50 ± 1.87 | 43.10 ± 0.47 | 43.12 ± 0.47 | 43.39 ± 0.48 | 46.14 ± 0.38 | # Thank you! Code and pre-trained models are available at https://github.com/amazon-research/long-tailed-ood-detection