

Partial and Asymmetric Contrastive Learning for Out-of-Distribution Detection in Long-Tailed Recognition

Haotao Wang¹

Aston Zhang²

Yi Zhu²

Shuai Zheng² Mu Li²

Alex Smola²

Zhangyang Wang¹

¹University of Texas at Austin, ²Amazon Web Services

Out-of-Distribution (OOD) Detection

(unseen category)

Out-of-Distribution (OOD) Detection

Test sample: bird (unseen category)

In-distribution classification loss

Out-of-distribution detection loss

Previous solutions:

$$\mathcal{L} = \mathbb{E}_{x \sim \mathcal{D}_{in}}[\mathcal{L}_{in}(x)] + \lambda \mathbb{E}_{x \sim \mathcal{D}_{out}}[\mathcal{L}_{out}(x)]$$

For example, in Outlier Exposure (OE)[1]:

$$\mathcal{L}_{\mathrm{out}}(x) = \mathrm{KL}(f(x) \| u)$$
 Softmax probability Uniform distribution

Categories included in the training set (in-distribution data)

Head-classes:

Well-represented in training set; high prediction confidence.

Tail-classes:

Underrepresented in training set; low prediction confidence.

Class index

Categories excluded in the training set (out-of-distribution data)

OOD samples:

Expected to have low prediction confidence.

Results on a head-class in CIFAR100-LT.

Results on a tail-class in CIFAR100-LT.

Tail-class samples have lower prediction confidence and tend to be misclassified as OOD samples.

Outlier Exposure (OE) on CIFAR10

Tail classes heavily Head classes are overlap with OOD well-separated from samples. OOD samples. airplane frog automobile horse bird ship cat truck deer OOD dog Outlier Exposure (OE) on CIFAR10-LT

(long-tailed version of CIFAR10)

Existing OOD detection methods suffer significant performance drop when trained on long-tailed datasets.

Method	Dataset	AUROC (†)	AUPR (†)	FPR95 (↓)	ACC (†)
NT	CIFAR10	85.86	84.37	52.52	93.45
(MSP)	CIFAR10-LT	72.28 (-13.58)	70.27 (-14.10)	66.07 (+13.55)	72.34 (-21.11)
OE	CIFAR10	96.68	96.29	14.59	92.81
	CIFAR10-LT	89.92 (-6.75)	87.71 (-8.58)	34.80 (+20.21)	73.30 (-19.51)
EnergyOE	CIFAR10	96.59	96.37	14.80	93.07
	CIFAR10-LT	89.31 (-7.27)	88.92 (-7.45)	40.88 (+26.08)	74.68 (-18.39)
SOFL	CIFAR10	96.74	96.60	14.57	89.13
	CIFAR10-LT	91.13 (-5.61)	90.49 (-6.10)	34.98 (+20.41)	54.42 (-34.71)
OECC	CIFAR10	96.27	95.41	14.77	91.95
	CIFAR10-LT	87.28 (-8.99)	86.29 (-9.12)	45.24 (+30.47)	60.16 (-31.79)
NTOM	CIFAR10	96.92	96.95	14.95	91.44
	CIFAR10-LT	92.89 (-4.03)	92.31 (-4.65)	29.03 (+14.09)	66.41 (-25.03)

OOD Detection on Long-Tailed Dataset

Naively combining OOD detection methods with long-tail recognition (LTR) methods doesn't bring significant gains.

$\mathcal{D}_{ ext{in}}$	OOD Detection Method		LTR Method	AUROC (†)	AUPR (†)	FPR95 (↓)	ACC (†)
			None	89.92	87.71	34.80	73.30
CIFAR	OE		Re-weighting	89.34	86.39	37.09	70.35
10-LT	OE	+	au-norm	89.58	85.88	33.80	73.33
10-L1			LA	89.46	86.39	34.94	<u>73.93</u>
	Our method			90.99 ±0.19	89.24 ±0.34	33.36 ±0.79	77.08 ±1.01
			None	72.62	66.73	68.69	39.33
CIFAR	OE		Re-weighting	72.07	66.05	70.62	39.42
100-LT	OE	+	au-norm	<u>72.71</u>	66.59	<u>68.04</u>	40.87
100-L1			LA	72.56	66.48	68.24	<u>42.06</u>
	Our method		ethod	73.32 ± 0.32	67.18 \pm 0.10	67.44 \pm 0.58	43.10 ± 0.47

OOD detection methods: Discourage over-confident predictions on rare samples.

LTR methods: Encourage confident predictions on rare samples.

Our solution:

- 1. Explicitly distinguish tail-class in-distribution samples from OOD samples.
- 2. Disentangle the model to two branches (sharing most parameters): One for OOD detection, and the other for in-distribution classification (LTR).

Partial and Asymmetric Supervised Contrastive Learning (PASCL)

Partiality

- We apply contrastive learning only on tail-class in-distribution and OOD data, not headclass in-distribution data.
- Intuition: As shown previously, head-class in-distribution samples can be easily separated from the OOD samples, so we do not use an extra contrastive learning loss to explicitly push them away.

Asymmetry

- We pull in-distribution samples within the same class together, but do not pull OOD samples together.
- Intuition: OOD training set typically has huge diversity in order to be representative for the open visual world, and thus the OOD training samples are not necessarily from the same class.

Auxiliary Branch Finetuning (ABF)

Intuition:

- 1. In-distribution and out-of-distribution samples have different underlying distributions.
- 2. It is challenging to achieve anomaly detection and long-tailed in-distribution classification using a shared classification head.

[3] Intriguing properties of adversarial training at scale. In ICLR, 2020.

Auxiliary Branch Finetuning (ABF)

$$\mathbb{E}_{x \sim \mathcal{D}_{in}}[\mathcal{L}_{in}^{LA}(x)]. \tag{5}$$

Stage 2: Finetune BN and FC layers in auxiliary branch using logit-adjustment (LA) cross-entropy loss [2] on indistribution data.

Algorithm 1 Partial and Asymmetric Supervised Contrastive Learning (PASCL)

Input: in-distribution training set \mathcal{D}_{in} , OOD training set \mathcal{D}_{out} , main branch training iteration n_1 , auxiliary branch finetuning iteration n_2 .

#Stage 1: Train main branch.

for i=1 to n_1 do

Sample a batch of in-distribution and OOD training samples.

Update the main branch model by minimizing Eq. (4)

end for

#Stage 2: Finetune auxiliary branch.

Fix all layers except the auxiliary BN and classification layers in the model.

for i = 1 to n_2 do

Sample a batch of in-distribution training samples.

Update the auxiliary BN and classification layers by minimizing Eq. (5).

end for

Results on CIFAR10-LT

(a) OOD detection results and in-distribution classification results in terms of ACC95.

$\mathcal{D}_{ ext{out}}^{ ext{test}}$	Method	AUROC (†)	AUPR (†)	FPR95 (↓)	ACC95 (↑)
Texture	OE	92.59 ± 0.42	83.32 ± 1.67	25.10 ± 1.08	84.52 ± 0.76
	Ours	93.16 ± 0.37	84.80 ± 1.50	23.26 ± 0.91	85.86 ± 0.72
SVHN	OE	95.10 ± 1.01	97.14 ± 0.81	16.15 ± 1.52	81.33 ± 0.81
	Ours	96.63 ± 0.90	98.06 ± 0.56	12.18 ± 3.33	82.72 ± 1.51
CIFAR100	OE Ours	83.40 ± 0.30 84.43 ± 0.23	80.93 ± 0.57 82.99 ± 0.48	56.96 ± 0.91 57.27 ± 0.88	94.56 ± 0.57 94.48 ± 0.31
Tiny	OE	86.14 ± 0.29	79.33 ± 0.65	47.78 ± 0.72	91.19 ± 0.33
ImageNet	Ours	87.14 ± 0.18	81.54 ±0.38	47.69 ± 0.59	91.20 ± 0.35
LSUN	OE	91.35 ± 0.23	87.62 ± 0.82	27.86 ± 0.68	85.49 ± 0.69
	Ours	93.17 ± 0.15	91.76 ± 0.53	26.40 ± 1.00	86.67 ± 0.90
Places365	OE	90.07 ± 0.26	95.15 ± 0.24	34.04 ± 0.91	87.07 ± 0.53
	Ours	91.43 ± 0.17	96.28 ± 0.14	33.40 ± 0.88	87.87 ± 0.71
Average	OE	89.77 ± 0.27	87.25 ± 0.61	34.65 ± 0.46	87.36 ± 0.51
	Ours	90.99 ± 0.19	89.24 ± 0.34	33.36 ± 0.79	88.13 ± 0.56

(b) In-distribution classification results in terms of ACC@FPRn.

Method		ACC@F	FPRn (†)	
Method	0	0.001	0.01	0.1
OE	73.84 ± 0.77	73.90 ± 0.77	74.46 ± 0.81	78.88 ± 0.66
Ours	73.84 ± 0.77 77.08 ± 1.01	77.13 ± 1.02	77.64 ± 0.99	81.96 ± 0.85

(c) Comparison with other methods.

$\mathcal{D}_{ ext{out}}^{ ext{test}}$	Method	AUROC (†)	AUPR (†)	FPR95 (↓)	ACC (↑)
	ST (MSP)	72.28	70.27	66.07	72.34
	OECC	87.28	86.29	45.24	60.16
Avaraga	EnergyOE	89.31	88.92	40.88	74.68
Average	OE	89.77 ± 0.27	87.25 ± 0.61	34.65 ± 0.46	73.84 ± 0.77
	Ours	90.99 ± 0.19	89.24 ± 0.34	33.36 ± 0.79	77.08 ± 1.01

Results on CIFAR100-LT

(a) OOD detection results and in-distribution classification results in terms of ACC95.

$\mathcal{D}_{ ext{out}}^{ ext{test}}$	Method	AUROC (†)	AUPR (↑)	FPR95 (↓)	ACC95 (†)
Texture	OE	76.71 ± 1.20	58.79 ± 1.39	68.28 ± 1.53	71.43 ± 1.58
Texture	Ours	76.01 ± 0.66	58.12 ± 1.06	67.43 ± 1.93	73.11 ± 1.55
SVHN	OE	77.61 ± 3.26	86.82 ± 2.50	58.04 ± 4.82	64.27 ± 3.26
SVHN	Ours	80.19 ± 2.19	88.49 ± 1.59	53.45 ± 3.60	64.50 ± 1.87
CIEAD10	OE	62.23 ± 0.30	57.57 ± 0.34	80.64 ± 0.98	82.67 ± 0.99
CIFAR10	Ours	62.33 ± 0.38	57.14 ± 0.20	79.55 ± 0.84	82.30 ± 1.07
Tiny	OE	68.04 ± 0.37	51.66 ± 0.51	76.66 ± 0.47	76.22 ± 0.61
ImageNet	Ours	68.20 ± 0.37	51.53 ± 0.42	76.11 ± 0.80	77.56 ± 1.15
LSUN	OE	77.10 ± 0.64	61.42 ± 0.99	63.98 ± 1.38	65.64 ± 1.03
LSUN	Ours	77.19 ± 0.44	61.27 ± 0.72	63.31 ± 0.87	68.05 ± 1.24
Places365	OE	75.80 ± 0.45	86.68 ± 0.38	65.72 ± 0.92	67.04 ± 0.49
Places303	Ours	76.02 ± 0.21	86.52 ± 0.29	64.81 ± 0.27	69.04 ± 0.90
Ахганада	OE	72.91 ± 0.68	67.16 ± 0.57	68.89 ± 1.07	71.21 ± 0.84
Average	Ours	73.32 ± 0.32	67.18 ± 0.10	67.44 ± 0.58	72.43 \pm 0.66

(b) in-distribution classification results in terms of ACC@FPRn.

	Mathad		ACC@I	FPRn (†)	
	Method	0	0.001	0.01	0.1
-	OE Ours	1		39.38 ± 0.38 43.39 ± 0.48	

(c) Comparison with other methods.

$\mathcal{D}_{ ext{out}}^{ ext{test}}$	Method	AUROC (†)	AUPR (↑)	FPR95 (↓)	ACC (↑)
	ST (MSP)	61.00	57.54	82.01	40.97
	OECC	70.38	66.87	73.15	32.93
Axionopo	EnergyOE	71.10	67.23	71.78	39.05
Average	OE	72.91 ± 0.68	67.16 ± 0.57	68.89 ± 1.07	39.04 ± 0.37
	Ours	73.32 ± 0.32	67.18 ± 0.10	67.44 ± 0.58	43.10 ± 0.47

Results on ImageNet-LT

$\mathcal{D}_{ ext{out}}^{ ext{test}}$	Mothod	AUROC (†)	ALIDD (4)	FPR@TPR $n(\downarrow)$			$ACC@TPRn (\uparrow)$			$ACC@FPRn (\uparrow)$							
out	Method	AUROC (1)	AUPR (†)	0.98	0.95	0.90	0.80	0.98	0.95	0.90	0.80	0	0.001	0.001 0.01 0.1			
	ST (MSP)	53.81	51.63	95.38	90.15	83.52	72.97	96.67	92.61	87.43	77.52	39.65	39.68	40.00	43.18		
1	OECC	63.07	63.05	93.15	86.90	78.79	65.23	94.25	88.23	80.12	68.36	38.25	38.28	38.56	41.47		
ImageNet	EnergyOE	64.76	64.77	94.15	87.72	<u>78.36</u>	<u>63.71</u>	80.18	74.38	67.65	59.68	38.50	38.52	38.72	40.99		
-1k-OOD	OE	66.33	68.29	95.11	88.22	78.68	65.28	95.46	88.22	78.68	65.28	37.60	37.62	37.79	40.00		
1	Ours	68.00	70.15	94.38	<u>87.53</u>	78.12	62.48	95.69	<u>89.55</u>	80.88	<u>69.60</u>	45.49	45.51	45.62	47.49		
	Ours	(+1.67)	(+1.86)	(-0.73)	(-0.69)	(-0.56)	(-2.80)	(+0.23)	(+1.33)	(+2.20)	(+4.32)	(+7.89)	(+7.89)	(+7.83)	(+7.49)		

Ablation study on each component in PASCL

	A	nmetry Partiality ABF AUROC (†) AUPR (†) FP	EDD05 (1)	FPR95 (↓) ACC95 (↑)	$ACC@FPRn (\uparrow)$						
CIFAR10-LT	Asymmetry	Asymmetry Partiality		AUROC (†)	AUPR (↑)	FPK95 (\psi)	ACC95 (†)	0	0.001	0.01	0.1
	No contrastive loss (OE)			95.10 ± 1.01	97.14 ± 0.81	16.15 ± 1.52	81.33 ± 0.81	73.84 ± 0.77	73.90 ± 0.77	74.46 ± 0.81	78.88 ± 0.66
	×	×	X	95.34 ± 1.58	97.30 ± 1.20	15.12 ± 3.07	81.94 ± 1.28	75.03 ± 1.46	75.09 ± 1.45	75.60 ± 1.44	80.02 ± 1.10
CIEAD 10 LT	×	✓	X	95.01 ± 1.25	96.74 ± 0.78	15.31 ± 4.35	82.34 ± 1.56	74.46 ± 1.80	74.52 ± 1.80	75.04 ± 1.76	80.21 ± 0.99
CIFAR10-LI	✓	×	X	94.91 ± 1.43	96.86 ± 1.47	15.57 ± 1.19	82.08 ± 0.47	75.24 ± 0.99	75.29 ± 0.98	75.77 ± 0.98	79.85 ± 0.77
	✓	✓	X	96.63 ± 0.90	98.06 ± 0.56	12.18 ± 3.33	81.70 ± 1.21	76.20 ± 0.79	76.26 ± 0.79	76.85 ± 0.81	81.07 ± 0.58
	✓	✓	✓	96.63 ± 0.90	98.06 ± 0.56	12.18 ± 3.33	82.72 ± 1.51	77.08 ± 1.01	77.13 ± 1.02	77.64 ± 0.99	81.96 ± 0.85
	No contra	stive loss (C	DE)	77.61 ± 3.26	86.82 ± 2.50	58.04 ± 4.82	64.27 ± 3.26	39.04 ± 0.37	39.07 ± 0.38	39.38 ± 0.38	42.40 ± 0.44
	×	×	X	78.05 ± 2.12	87.18 ± 0.87	59.10 ± 5.03	66.44 \pm 3.90	40.21 ± 0.43	40.25 ± 0.43	40.56 ± 0.45	43.71 ± 0.42
CIFAR100-LT	×	✓	X	79.46 ± 1.83	88.01 ± 1.90	54.59 ± 3.34	63.86 ± 2.52	40.24 ± 0.53	40.28 ± 0.53	40.60 ± 0.55	43.93 ± 0.57
CIFAR100-LI	✓	×	X	79.54 ± 2.38	87.68 ± 1.51	54.27 ± 3.69	63.33 ± 2.87	40.00 ± 0.42	40.04 ± 0.41	40.36 ± 0.42	43.60 ± 0.42
	✓	✓	X	80.19 ± 2.19	88.49 ± 1.59	53.45 ± 3.60	63.10 ± 1.87	40.33 ± 0.20	40.36 ± 0.20	40.66 ± 0.18	43.79 ± 0.22
	✓	✓	✓	80.19 ± 2.19	88.49 ± 1.59	53.45 ± 3.60	64.50 ± 1.87	43.10 ± 0.47	43.12 ± 0.47	43.39 ± 0.48	46.14 ± 0.38

Thank you!

 Code and pre-trained models are available at https://github.com/amazon-research/long-tailed-ood-detection

