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Background 

Randomized Machine Learning (RML) studies how to randomize regular learning 
processes and has achieved outstanding learning efficiency. 

However, most RML techniques are model-specific.  
- Kernel: Random Fourier Features (RFF) [2008] approximates k(x,y) with the 

inner product of x and y’s Random Fourier Features. 

- Tree: Extra tree [2006] splits tree nodes based on randomly selected features 
instead of optimally selected ones. 

- MLP: Random Vector Functional Link (RVFL) [1994] randomly generates 
some network weights of instead of training all weights.



Given any hypothesis class, RHSS randomly samples k hypotheses and learns a 

optimal model from their linear span by simply solving a linear least square 

problem in               time, where n is the number of training instances. 

We propose a model-agnostic RML framework named RHSS.

Linear



We propose a model-agnostic randomized learning framework.

How is this changing the current paradigm?

- Model-agnostic
- Removes the “weakly learned” assumption

Traditional ensemble learning methods hinges on the assumption that base 
models are weakly learned (better than random guessing), we remove such 
assumption: base models can just be randomly generated, without any learning.



We show applications of RHSS with three hypothesis classes. 

Kernel Regression Multi-Layer Perceptron Decision Tree



Performance of RHSS and its model-specific counterpart. 

Kernel Regression 

RHSS-KRR converges more efficiently than RFF-KRR as k increases.

Multi-Layer Perceptron Decision Tree



Performance of RHSS and its model-specific counterpart. 

Kernel Regression Multi-Layer Perceptron Decision Tree

RHSS-MLP outperforms RVFL with number of hypothesis > 12.



Performance of RHSS and its model-specific counterpart. 

Kernel Regression Multi-Layer Perceptron Decision Tree

RHSS-Tree is similar to extra tree and comparable to random forest.



We derive theoretical guarantees for RHSS. 

Under proper conditions, we show w.h.p. the generalization error of RHSS 
has 

,  where

Taking the optimal k, the error bound becomes 



Thanks!


