

Coordinated Double Machine Learning

Nitai Fingerhut
Technion

Matteo Sesia
USC

Yaniv Romano
Technion

ICML 2022

Code: <https://github.com/nitaifingerhut/C-DML>

Data Example – 401(k) dataset

Input i.i.d. data $(X_1, D_1, Y_1), (X_2, D_2, Y_2), \dots, (X_n, D_n, Y_n)$

- Features X_i : individual's age, income, and other financial attributes
- Treatment D_i : 401(k) eligibility
- Response Y_i : net financial assets
- $n = 2,000$ subjects

Goal: provide an unbiased estimate of the treatment effect

Challenges: finite samples, features and treatment are correlated

Partially Linear Regression Model

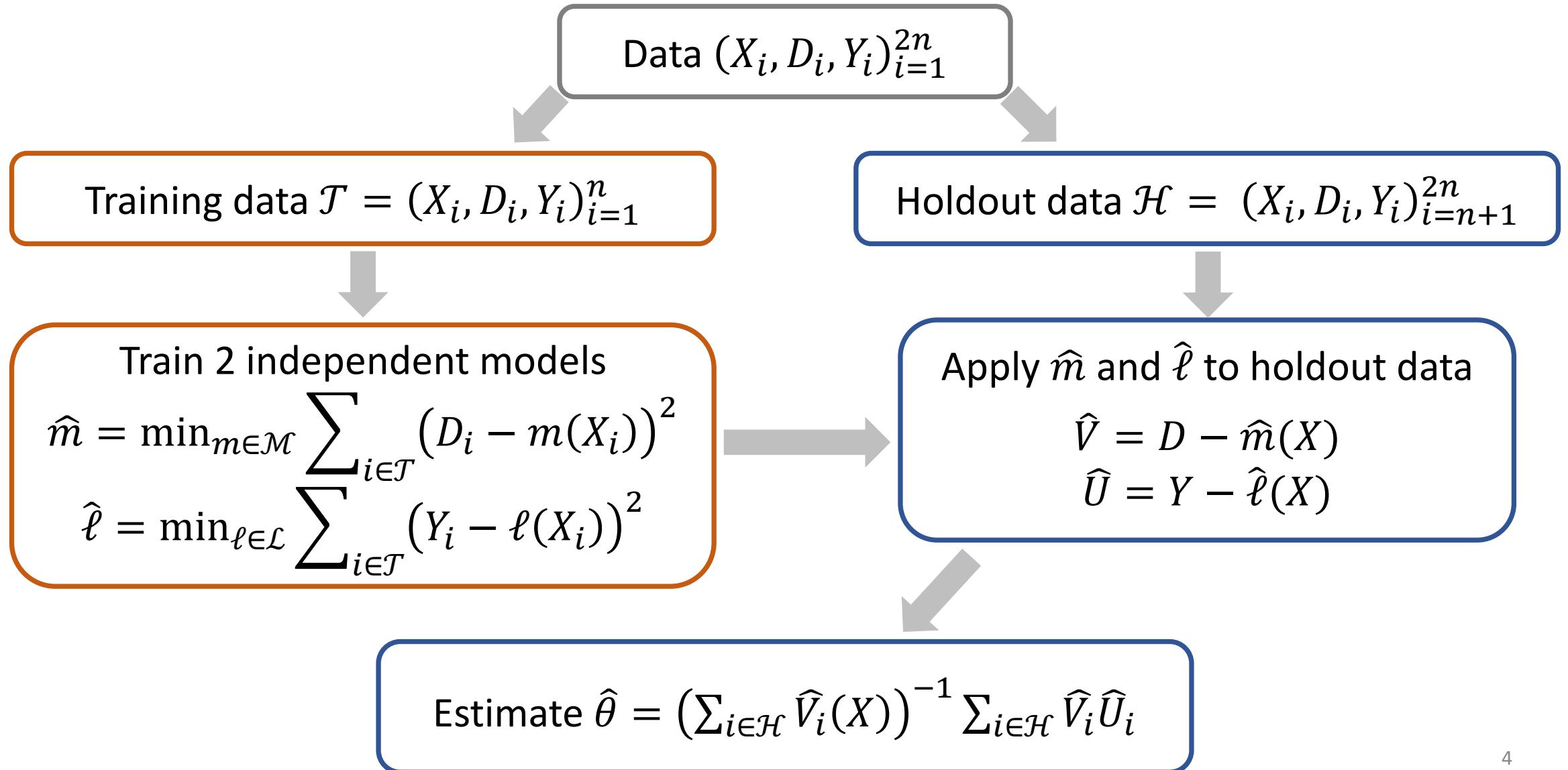
Model assumption:

$$D = m(X) + V$$

$$Y = D \cdot \theta + g(X) + U$$

- Want to estimate the **treatment effect** $\theta \in \mathbb{R}$
- The functions $m(\cdot), g(\cdot)$ link X to D and Y correspondingly
 - Can be ANY function! possibly nonlinear ones
- U and V are independent noise terms

Double Machine Learning: Approach Chernozhukov et al. (18)



Double Machine Learning: Theory Chernozhukov et al. (18)

DML estimation is \sqrt{n} -consistent: $|\theta - \hat{\theta}| \leq \mathcal{O}(n^{-1/2})$, if either of the two cond. is met

$\hat{m}(X)$ converges at rate $\mathcal{O}(n^{-\frac{1}{2}})$

Unlikely in practice

Both $\hat{m}(X)$ and $\hat{\ell}(X)$ converge at rate $\mathcal{O}(n^{-\frac{1}{4}})$

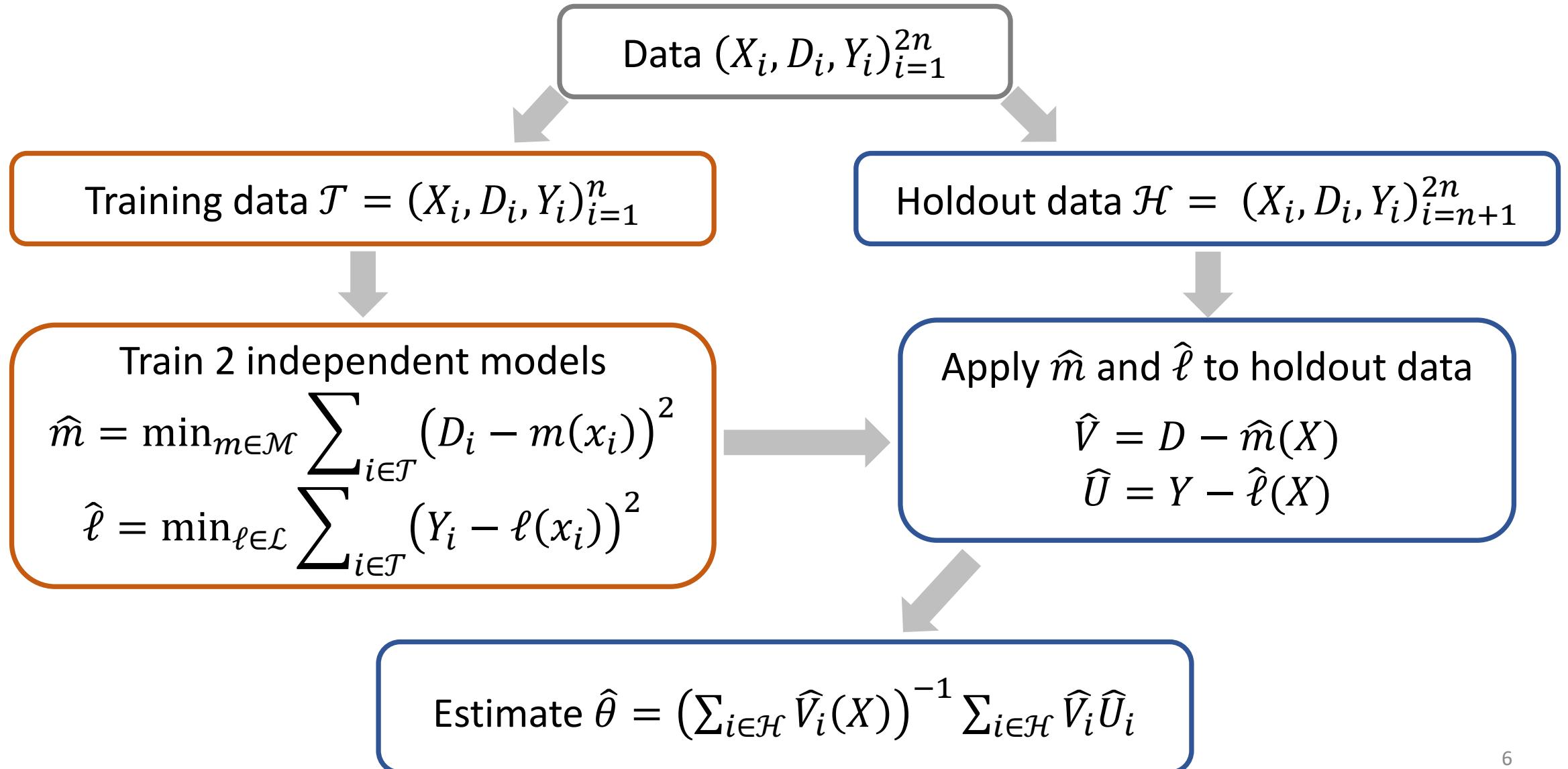
Weaker requirement

Our new finding: there is a **third** case where DML is \sqrt{n} -consistent

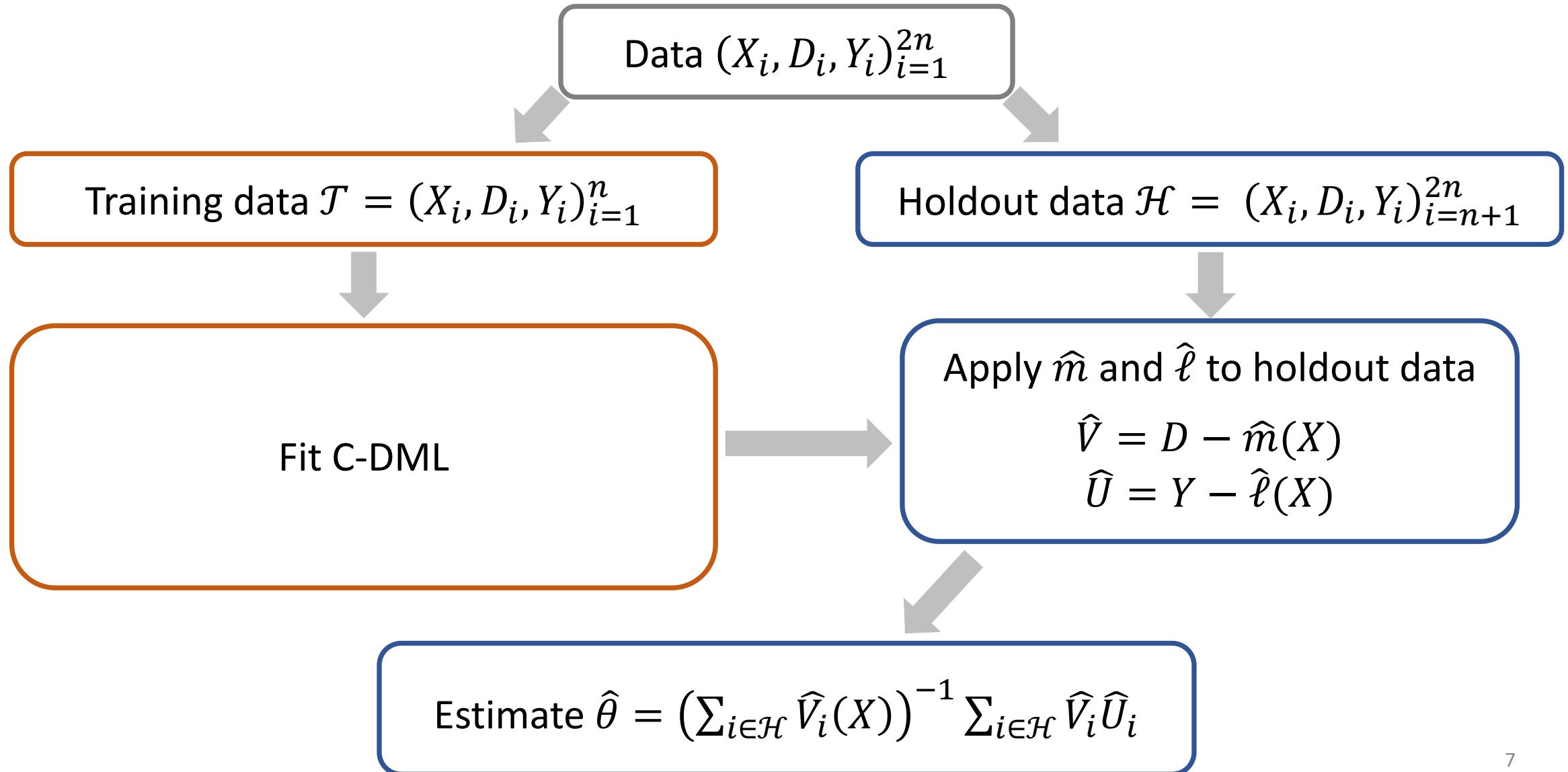
$\hat{m}(X)$ converges at rate $\mathcal{O}(n^{-\frac{1}{4}})$ and the residuals $\Delta\hat{m}(X), \Delta\hat{\ell}(X)$ are un-correlated

DML estimation bias: $|\theta - \hat{\theta}| \leq \frac{\mathbb{E}[\Delta\hat{m}(X) \cdot \Delta\hat{\ell}(X)] - \theta \cdot \mathbb{E}[(\Delta\hat{m}(X))^2]}{Var[V] + \mathbb{E}[(\Delta\hat{m}(X))^2]} + \mathcal{O}(n^{-1/2})$

Coordinated Double Machine Learning



Coordinated Double Machine Learning



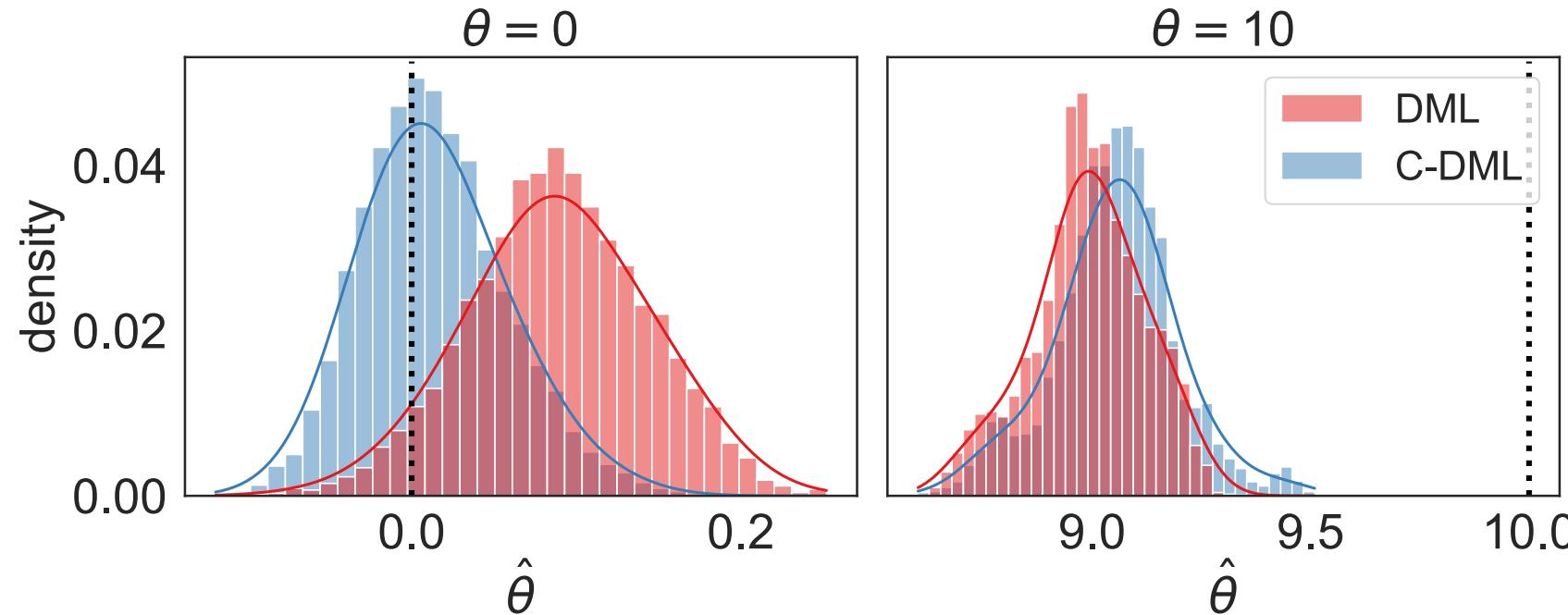
C-DML loss function

Train a **single model** with the following loss function

$$\min_{m \in \mathcal{M}, \ell \in \mathcal{L}} \sum_{i \in \mathcal{T}} (D_i - m(X_i))^2 + \sum_{i \in \mathcal{T}} (Y_i - \ell(X_i))^2 + \gamma \cdot \sum_{i \in \mathcal{T}} |(D_i - m(X_i))(Y_i - \ell(X_i))|$$

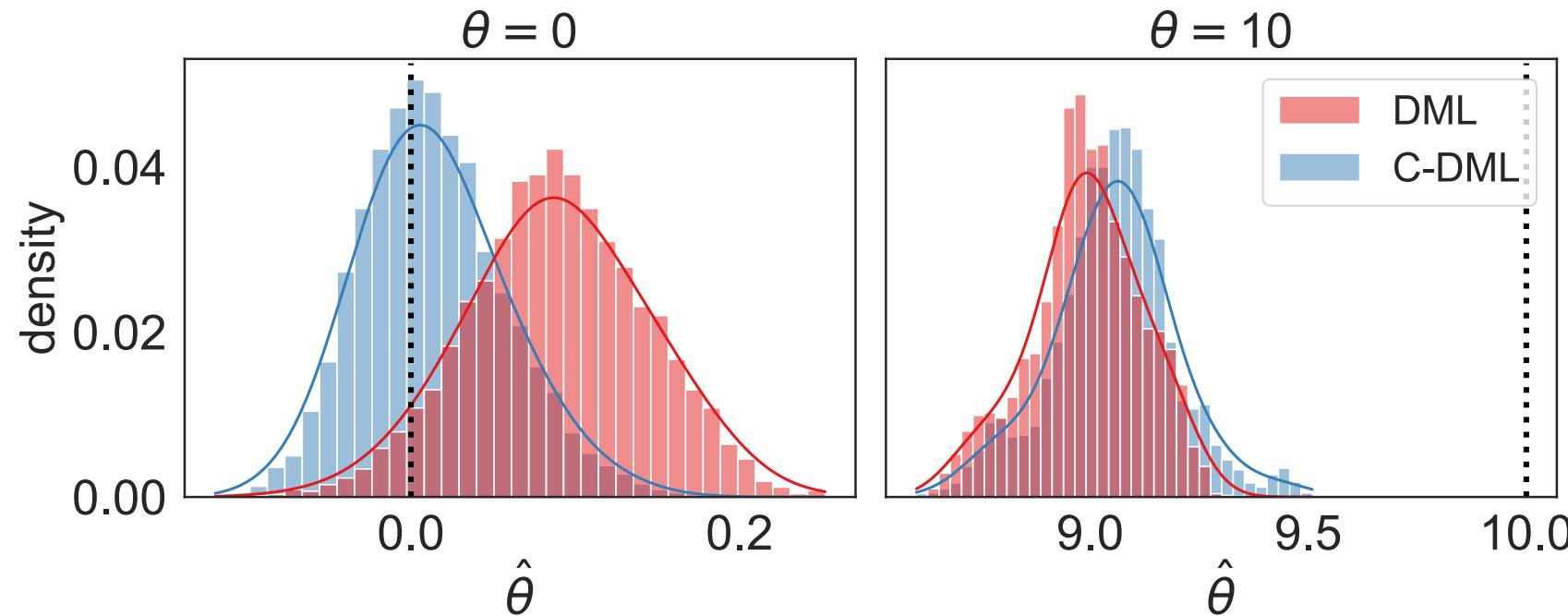
- C-DML seeks predictive models $\hat{m}(X)$ and $\hat{\ell}(X)$ with **uncorrelated residuals**
- Tuning the hyper-parameter γ via cross-validation – see paper

Results: 401(k) dataset



- The outcome is a simulated measure of net financial assets
- The treatment variable measures 401(k) eligibility
- 2000 examples; 5000 independent trials
- Use deep neural networks as base predictive models

Results: 401(k) dataset



$$\mathbb{E}[\hat{\theta}_{DML} - \theta] = 0.0894$$
$$\mathbb{E}[\hat{\theta}_{C-DML} - \theta] = 0.0136$$

$$\mathbb{E}[\hat{\theta}_{DML} - \theta] = -1.0081$$
$$\mathbb{E}[\hat{\theta}_{C-DML} - \theta] = -0.947$$

C-DML's estimated $\hat{\theta}$ is closer to the true θ

Thank you!

