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Motivation

In Reinforcement Learning (RL) the objective of the agent is to maximize
expected sum of rewards.

The reward hypothesis: “That all of what we mean by goals and purposes can be well
thought of as maximization of the expected value of the cumulative sum of a received
scalar signal (called reward).”
Von Neumann-Morgenstern (VNM) utility theory offers a principled approach.
We extend this theory to sequential decision making.
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Von Neumann-Morgenstern (VNM) Utility Theory

O: set of outcomes

L: set of all lotteries of outcomes

Example

O = {□, ◦,△}
M = p1□+ p2 ◦+p3△ (p1 + p2 + p3 = 1)
N = q1△+ q2M (q1 + q2 = 1)

≿: preference relation defined over L

Definition (Utility function)
A function u : L → R, such that for all M,N ∈ L,

M ≿ N ⇐⇒ u(M) ≥ u(N).

3 / 8
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Von Neumann-Morgenstern (VNM) Utility Theory (cont.)

VNM Rationality Axioms

Completeness: For all M,N ∈ L, M ≿ N or N ≿ M.
Transitivity: For all M,N,K ∈ L, if M ≿ N and N ≿ K, then M ≿ K.
Continuity: For all lotteries M ≿ N ≿ K, there exists p ∈ [0, 1] such that pM + (1 − p)K ≈ N.
Independence: For all M,N,K ∈ L and for all p ∈ [0, 1],

M ≿ N ⇐⇒ (1 − p)M + pK ≿ (1 − p)N + pK.

Theorem (VNM Utility Theorem)
≿ satisfies the VNM axioms ⇐⇒ there exists a utility function u such that

u
(∑

x∈O

p(x)x
)

=
∑
x∈O

p(x)u(x).
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Von Neumann-Morgenstern (VNM) Utility Theory (cont.)
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VNM Rationality Axioms

Completeness: For all M,N ∈ L, M ≿ N or N ≿ M.
Transitivity: For all M,N,K ∈ L, if M ≿ N and N ≿ K, then M ≿ K.

Continuity: For all lotteries M ≿ N ≿ K, there exists p ∈ [0, 1] such that pM + (1 − p)K ≈ N.
Independence: For all M,N,K ∈ L and for all p ∈ [0, 1],

M ≿ N ⇐⇒ (1 − p)M + pK ≿ (1 − p)N + pK.

Theorem (VNM Utility Theorem)
≿ satisfies the VNM axioms ⇐⇒ there exists a utility function u such that

u
(∑

x∈O

p(x)x
)

=
∑
x∈O

p(x)u(x).

4 / 8



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Von Neumann-Morgenstern (VNM) Utility Theory (cont.)
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Von Neumann-Morgenstern (VNM) Utility Theory (cont.)

VNM Rationality Axioms

Completeness: For all M,N ∈ L, M ≿ N or N ≿ M.
Transitivity: For all M,N,K ∈ L, if M ≿ N and N ≿ K, then M ≿ K.
Continuity: For all lotteries M ≿ N ≿ K, there exists p ∈ [0, 1] such that pM + (1 − p)K ≈ N.
Independence: For all M,N,K ∈ L and for all p ∈ [0, 1],

M ≿ N ⇐⇒ (1 − p)M + pK ≿ (1 − p)N + pK.

Theorem (VNM Utility Theorem)
≿ satisfies the VNM axioms ⇐⇒ there exists a utility function u such that

u
(∑

x∈O

p(x)x
)

=
∑
x∈O

p(x)u(x).

4 / 8



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Von Neumann-Morgenstern (VNM) Utility Theory (cont.)
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Extension to Sequential Decision Making

The agent’s actions (stochastically) determine a trajectory in a state-space S.

O = {all trajectories}
Preferences are defined over lotteries of trajectories.
So far, the structure of the decision process is not taken into account.
Notation

▶ transitions: t, t1, t2, ...
▶ trajectories: τ, τ1, τ2
▶ lotteries: M,N, J,K
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Memoryless Sequential Decision Making

Axiom (Memorylessness)
τ · M ≿ τ · N ⇐⇒ M ≿ N, where · denotes concatenation.

Example: t1

t2

t3

t4

t5

t6

⟨t1, t3, t5⟩ ≿ ⟨t1, t3, t6⟩ ⇐⇒ ⟨t5⟩ ≿ ⟨t6⟩

Theorem
Utilities take the form u(t · τ) = r(t) + m(t)u(τ), where r is the reward function and m
is the reward multiplier function.
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An Axiom for Markov Decision Processes

Axiom (Additivity)
p(τ1 · M) + (1 − p)J ≿ p(τ1 · N) + (1 − p)K

⇐⇒ p(τ2 · M) + (1 − p)J ≿ p(τ2 · N) + (1 − p)K

Example: t1

t2

t3

t4

t5

t6

⟨t1, t3⟩ ≿ ⟨t2, t4⟩ and ⟨t5⟩ ≿ ⟨t6⟩ =⇒ ⟨t1, t3, t5⟩ ≿ ⟨t2, t4, t6⟩

Theorem
Utilities take the form u(τ) =

∑
t∈τ r(t), where r is the reward function.
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Discussion

“That all of what we mean by goals and purposes can be well thought of as maximization of
the expected value of the cumulative sum of a received scalar signal (called reward).”

What exactly does “goals and purposes” mean in the reward hypothesis?

If the goal is to achieve a desired policy π⋆, then we simply set

r(s, a, s′) =
{
+1 a = π⋆(s)
−1 otherwise.

goals and purposes = rational preferences
Any two behaviours can be compared.
If a given task can be represented as a rational and additive preference relation,
then it can be modeled as an MDP.

8 / 8
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If the goal is to achieve a desired policy π⋆, then we simply set

r(s, a, s′) =
{
+1 a = π⋆(s)
−1 otherwise.

goals and purposes = rational preferences

Any two behaviours can be compared.
If a given task can be represented as a rational and additive preference relation,
then it can be modeled as an MDP.
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