

Utility Theory for Sequential Decision Making

Mehran Shakerinava ^{1 2} Siamak Ravanbakhsh ^{1 2}

¹McGill University

²Mila Quebec AI Institute

ICML 2022

McGill

Mila

Motivation

- In Reinforcement Learning (RL) the objective of the agent is to maximize expected sum of rewards.

Motivation

- In Reinforcement Learning (RL) the objective of the agent is to maximize expected sum of rewards.
- The reward hypothesis: *“That all of what we mean by goals and purposes can be well thought of as maximization of the expected value of the cumulative sum of a received scalar signal (called reward).”*

Motivation

- In Reinforcement Learning (RL) the objective of the agent is to maximize expected sum of rewards.
- The reward hypothesis: *“That all of what we mean by goals and purposes can be well thought of as maximization of the expected value of the cumulative sum of a received scalar signal (called reward).”*
- Von Neumann-Morgenstern (VNM) utility theory offers a principled approach.

Motivation

- In Reinforcement Learning (RL) the objective of the agent is to maximize expected sum of rewards.
- The reward hypothesis: *“That all of what we mean by goals and purposes can be well thought of as maximization of the expected value of the cumulative sum of a received scalar signal (called reward).”*
- Von Neumann-Morgenstern (VNM) utility theory offers a principled approach.
- We extend this theory to sequential decision making.

Von Neumann-Morgenstern (VNM) Utility Theory

- \mathcal{O} : set of outcomes

Von Neumann-Morgenstern (VNM) Utility Theory

- \mathcal{O} : set of outcomes
- \mathcal{L} : set of all lotteries of outcomes

Von Neumann-Morgenstern (VNM) Utility Theory

- \mathcal{O} : set of outcomes
- \mathcal{L} : set of all lotteries of outcomes

Example

$$\mathcal{O} = \{\square, \circ, \triangle\}$$

$$M = p_1 \square + p_2 \circ + p_3 \triangle \quad (p_1 + p_2 + p_3 = 1)$$

$$N = q_1 \triangle + q_2 M \quad (q_1 + q_2 = 1)$$

Von Neumann-Morgenstern (VNM) Utility Theory

- \mathcal{O} : set of outcomes
- \mathcal{L} : set of all lotteries of outcomes

Example

$$\mathcal{O} = \{\square, \circ, \triangle\}$$

$$M = p_1 \square + p_2 \circ + p_3 \triangle \quad (p_1 + p_2 + p_3 = 1)$$

$$N = q_1 \triangle + q_2 M \quad (q_1 + q_2 = 1)$$

- \succsim : preference relation defined over \mathcal{L}

Von Neumann-Morgenstern (VNM) Utility Theory

- \mathcal{O} : set of outcomes
- \mathcal{L} : set of all lotteries of outcomes

Example

$$\mathcal{O} = \{\square, \circ, \triangle\}$$

$$M = p_1 \square + p_2 \circ + p_3 \triangle \quad (p_1 + p_2 + p_3 = 1)$$
$$N = q_1 \triangle + q_2 M \quad (q_1 + q_2 = 1)$$

- \succsim : preference relation defined over \mathcal{L}

Definition (Utility function)

A function $u : \mathcal{L} \rightarrow \mathbb{R}$, such that for all $M, N \in \mathcal{L}$,

$$M \succsim N \iff u(M) \geq u(N).$$

Von Neumann-Morgenstern (VNM) Utility Theory (cont.)

VNM Rationality Axioms

Von Neumann-Morgenstern (VNM) Utility Theory (cont.)

VNM Rationality Axioms

- **Completeness:** For all $M, N \in \mathcal{L}$, $M \succsim N$ or $N \succsim M$.

Von Neumann-Morgenstern (VNM) Utility Theory (cont.)

VNM Rationality Axioms

- **Completeness:** For all $M, N \in \mathcal{L}$, $M \succsim N$ or $N \succsim M$.
- **Transitivity:** For all $M, N, K \in \mathcal{L}$, if $M \succsim N$ and $N \succsim K$, then $M \succsim K$.

Von Neumann-Morgenstern (VNM) Utility Theory (cont.)

VNM Rationality Axioms

- **Completeness:** For all $M, N \in \mathcal{L}$, $M \succsim N$ or $N \succsim M$.
- **Transitivity:** For all $M, N, K \in \mathcal{L}$, if $M \succsim N$ and $N \succsim K$, then $M \succsim K$.
- **Continuity:** For all lotteries $M \succsim N \succsim K$, there exists $p \in [0, 1]$ such that $pM + (1 - p)K \approx N$.

Von Neumann-Morgenstern (VNM) Utility Theory (cont.)

VNM Rationality Axioms

- **Completeness:** For all $M, N \in \mathcal{L}$, $M \succsim N$ or $N \succsim M$.
- **Transitivity:** For all $M, N, K \in \mathcal{L}$, if $M \succsim N$ and $N \succsim K$, then $M \succsim K$.
- **Continuity:** For all lotteries $M \succsim N \succsim K$, there exists $p \in [0, 1]$ such that $pM + (1 - p)K \approx N$.
- **Independence:** For all $M, N, K \in \mathcal{L}$ and for all $p \in [0, 1]$,

$$M \succsim N \iff (1 - p)M + pK \succsim (1 - p)N + pK.$$

Von Neumann-Morgenstern (VNM) Utility Theory (cont.)

VNM Rationality Axioms

- **Completeness:** For all $M, N \in \mathcal{L}$, $M \succsim N$ or $N \succsim M$.
- **Transitivity:** For all $M, N, K \in \mathcal{L}$, if $M \succsim N$ and $N \succsim K$, then $M \succsim K$.
- **Continuity:** For all lotteries $M \succsim N \succsim K$, there exists $p \in [0, 1]$ such that $pM + (1 - p)K \approx N$.
- **Independence:** For all $M, N, K \in \mathcal{L}$ and for all $p \in [0, 1]$,

$$M \succsim N \iff (1 - p)M + pK \succsim (1 - p)N + pK.$$

Theorem (VNM Utility Theorem)

\succsim satisfies the VNM axioms \iff there exists a utility function u such that

$$u \left(\sum_{x \in \mathcal{O}} p(x)x \right) = \sum_{x \in \mathcal{O}} p(x)u(x).$$

Extension to Sequential Decision Making

- The agent's actions (stochastically) determine a **trajectory** in a state-space \mathcal{S} .

Extension to Sequential Decision Making

- The agent's actions (stochastically) determine a **trajectory** in a state-space \mathcal{S} .
- $\mathcal{O} = \{\text{all trajectories}\}$

Extension to Sequential Decision Making

- The agent's actions (stochastically) determine a **trajectory** in a state-space \mathcal{S} .
- $\mathcal{O} = \{\text{all trajectories}\}$
- Preferences are defined over *lotteries of trajectories*.

Extension to Sequential Decision Making

- The agent's actions (stochastically) determine a **trajectory** in a state-space \mathcal{S} .
- $\mathcal{O} = \{\text{all trajectories}\}$
- Preferences are defined over *lotteries of trajectories*.
- So far, the structure of the decision process is not taken into account.

Extension to Sequential Decision Making

- The agent's actions (stochastically) determine a **trajectory** in a state-space \mathcal{S} .
- $\mathcal{O} = \{\text{all trajectories}\}$
- Preferences are defined over *lotteries of trajectories*.
- So far, the structure of the decision process is not taken into account.
- **Notation**
 - ▶ transitions: t, t_1, t_2, \dots
 - ▶ trajectories: τ, τ_1, τ_2
 - ▶ lotteries: M, N, J, K

Memoryless Sequential Decision Making

Axiom (Memorylessness)

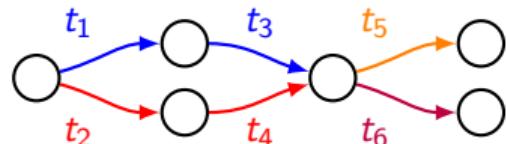
$\tau \cdot M \succsim \tau \cdot N \iff M \succsim N$, where \cdot denotes concatenation.

Memoryless Sequential Decision Making

Axiom (Memorylessness)

$\tau \cdot M \succsim \tau \cdot N \iff M \succsim N$, where \cdot denotes concatenation.

- Example:



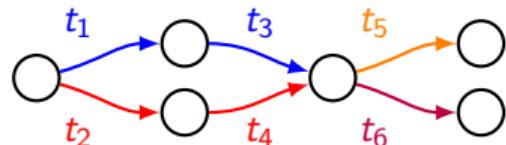
$$\langle t_1, t_3, t_5 \rangle \succsim \langle t_1, t_3, t_6 \rangle \iff \langle t_5 \rangle \succsim \langle t_6 \rangle$$

Memoryless Sequential Decision Making

Axiom (Memorylessness)

$\tau \cdot M \succsim \tau \cdot N \iff M \succsim N$, where \cdot denotes concatenation.

- Example:



$$\langle t_1, t_3, t_5 \rangle \succsim \langle t_1, t_3, t_6 \rangle \iff \langle t_5 \rangle \succsim \langle t_6 \rangle$$

Theorem

Utilities take the form $u(t \cdot \tau) = r(t) + m(t)u(\tau)$, where r is the reward function and m is the reward multiplier function.

An Axiom for Markov Decision Processes

Axiom (Additivity)

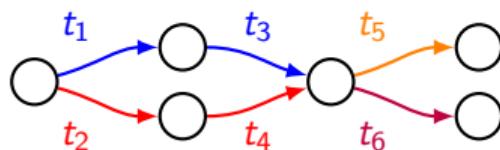
$$\begin{aligned} p(\tau_1 \cdot M) + (1 - p)J &\succsim p(\tau_1 \cdot N) + (1 - p)K \\ \iff p(\tau_2 \cdot M) + (1 - p)J &\succsim p(\tau_2 \cdot N) + (1 - p)K \end{aligned}$$

An Axiom for Markov Decision Processes

Axiom (Additivity)

$$\begin{aligned} p(\tau_1 \cdot M) + (1-p)J &\succsim p(\tau_1 \cdot N) + (1-p)K \\ \iff p(\tau_2 \cdot M) + (1-p)J &\succsim p(\tau_2 \cdot N) + (1-p)K \end{aligned}$$

- Example:



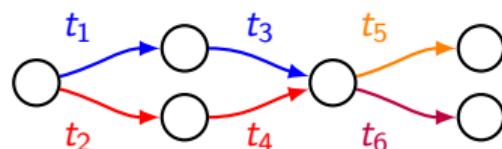
$$\langle t_1, t_3 \rangle \succsim \langle t_2, t_4 \rangle \text{ and } \langle t_5 \rangle \succsim \langle t_6 \rangle \implies \langle t_1, t_3, t_5 \rangle \succsim \langle t_2, t_4, t_6 \rangle$$

An Axiom for Markov Decision Processes

Axiom (Additivity)

$$\begin{aligned} p(\tau_1 \cdot M) + (1-p)J &\succsim p(\tau_1 \cdot N) + (1-p)K \\ \iff p(\tau_2 \cdot M) + (1-p)J &\succsim p(\tau_2 \cdot N) + (1-p)K \end{aligned}$$

- Example:



$$\langle t_1, t_3 \rangle \succsim \langle t_2, t_4 \rangle \text{ and } \langle t_5 \rangle \succsim \langle t_6 \rangle \implies \langle t_1, t_3, t_5 \rangle \succsim \langle t_2, t_4, t_6 \rangle$$

Theorem

Utilities take the form $u(\tau) = \sum_{t \in \tau} r(t)$, where r is the reward function.

Discussion

*“That all of what we mean by **goals and purposes** can be well thought of as maximization of the expected value of the cumulative sum of a received scalar signal (called reward).”*

- What exactly does “**goals and purposes**” mean in the reward hypothesis?

Discussion

*“That all of what we mean by **goals and purposes** can be well thought of as maximization of the expected value of the cumulative sum of a received scalar signal (called reward).”*

- What exactly does “**goals and purposes**” mean in the reward hypothesis?
- If the goal is to achieve a desired policy π^* , then we simply set

$$r(s, a, s') = \begin{cases} +1 & a = \pi^*(s) \\ -1 & \text{otherwise.} \end{cases}$$

Discussion

*“That all of what we mean by **goals and purposes** can be well thought of as maximization of the expected value of the cumulative sum of a received scalar signal (called reward).”*

- What exactly does “**goals and purposes**” mean in the reward hypothesis?
- If the goal is to achieve a desired policy π^* , then we simply set

$$r(s, a, s') = \begin{cases} +1 & a = \pi^*(s) \\ -1 & \text{otherwise.} \end{cases}$$

- goals and purposes = *rational preferences*

Discussion

*“That all of what we mean by **goals and purposes** can be well thought of as maximization of the expected value of the cumulative sum of a received scalar signal (called reward).”*

- What exactly does “**goals and purposes**” mean in the reward hypothesis?
- If the goal is to achieve a desired policy π^* , then we simply set

$$r(s, a, s') = \begin{cases} +1 & a = \pi^*(s) \\ -1 & \text{otherwise.} \end{cases}$$

- goals and purposes = *rational preferences*
- Any two behaviours can be compared.

Discussion

*“That all of what we mean by **goals and purposes** can be well thought of as maximization of the expected value of the cumulative sum of a received scalar signal (called reward).”*

- What exactly does “**goals and purposes**” mean in the reward hypothesis?
- If the goal is to achieve a desired policy π^* , then we simply set

$$r(s, a, s') = \begin{cases} +1 & a = \pi^*(s) \\ -1 & \text{otherwise.} \end{cases}$$

- goals and purposes = *rational preferences*
- Any two behaviours can be compared.
- If a given task can be represented as a *rational and additive* preference relation, then it can be modeled as an MDP.