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Problem Definition
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Observational dataset Latent hierarchical structure

Is it possible to find latent variable L, and their causal relations
only from measured variables X;?
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Linear, Non-Gaussian
Latent Hierarchical Model

* Measured variables may not be directly
causally related but were generated by
causally related latent variables

* Some latent variables have only latent

variables as children (i.e., no observed
children)

X1 Xg X3 Xy X5 Xg X7 Xg Xg X10X11 X192 X33

* Assume variables were generated by the

Linear, Non-Gaussian Latent Hierarchical
Model (LINGLaH)

Find a sufficient graphical condition that renders the causal
structure of a latent hierarchical model identifiable?



Linear, Non-Gaussian
Latent Hierarchical Model

* Measured variables may not be directly
causally related but were generated by
causally related latent variables

* Some latent variables have only latent

variables as children (i.e., no observed
children)

X1 Xg X3 Xy X5 Xg X7 Xg Xg X10X11 X192 X33

* Assume variables were generated by the

Linear, Non-Gaussian Latent Hierarchical
Model (LINGLaH)

+ Minimal Latent Hierarchical Structure Condition:

(1) each latent variable has at least three neighbors, and

(2) each latent variable has at least two pure children (which can be either
latent or observed)



Model Estimation

o Step 1: locate all latent variables FAE KK Kt A B Xy b
e PI. Identify causal clusters
from the active variable set
e P2. Determine the number of
new latent variables that need
to be introduced for these
clusters
* P3. Update the active variable
set

o Step 2: infer the causal structure
among the identified latent variables
* PI. identify the causal order
among latent variables
* P2.remove redundant edges
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Simulation

o 4 cases, with different latent structures, including tree-based and

measurement-based structures

o Can we recover the ground-truth structure, including causal direction?

e Structure Recovery Error rate
e Error in the Number of Latent variable sets
e (Correct ordermg rate
Table 1. Performance of LaHME, GIN, FOFC, BPC, CLRG and CLNIJ on learning latent hierarchical structure.
Structure Recovery Error Rate | Error in Hidden Variables | Correct-Ordering Rate 1
Algorithm | LaHME | GIN | FOFC | BPC | CLRG | CLNJ | LaHME | GIN | FOFC | BPC | CLRG | CLN] | LaHME | GIN | FOFC | BPC | CLRG | CLNJ
k | 01 |02 10 |10 | 10 | 10 | 01 |01 ] 05 |06 20 | 20 | 096 [092] - . - 8
Casel] [ 35k | 00 |00 ] 10 [ 10 ] 10 | 10 | 00 |00 ] 00 |0l | 20 | 20 0 710
k| 00 |00 10 | 10| 10 | 10 | 00 |00 ] 00 |00 ] 20 | 20 0 | 10
k | 02 |10 10 | 10| 10 | 10 | 02 |32 38 | 39| 40 | 40 | 09 |008
Case2 3k |01 10 40 |10 ‘10 | 1000 0| 36 381 40| 40 [ 0% | Dl
k| 00 | 10| 10 |10 | 10 | 10 | 00 |30 ] 35 |38 ] 40 | 40 0 |0l
k| 01 |10 ] 10 | 10| 10 | 10 | 02 | 13| 30 |31 ] 30 | 30 | 092 | 00
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Cased K07 T00 O IO IO | T0 02 32 o6 |60 %0 F B0 094 (00
k| 00 | 10| 10 |10 | 10 | 10 | 00 |31 58 |67 ] 80 | 80 [0 | 00




Simulation
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Application to multitasking behavior Data

The data set consists of 202 samples

<

Latent Factors  Children (Indicators)

(S)

Speed (S) Correctly marked Numbers (S1), Correctly ® @
marked Latters (S2), and Correctly marked S1 89 Sa By B9 E3Q10203
Figures (S3)

Error (E) Errors marking Numbers (E1), Errors marking (LaHME)Ours
Latters (E2), and Errors marking Figures (E3) S ), E

Question (Q) Correctly answered Questions Par.1 (Q1), Cor-
rectly answered Questions Par2 (Q2), and S1 Sq S30103Q3 By Es Es
Correctly answered Questions Par.3 (Q3)

Multitasking be- ~ Speed, Error, and Question (BPC)

havior (Mb) @

Q o @

Consistent with the hypothesized

S9-S53-51Q2Q3 E1E2E3
model given in Himi et al., 2019 (CLRG)

So S3E1  E9Q1Q2Q3
(GIN)
) @

S1 S92 S3 E1 Q1 Q2 Q3
(FOFC)

)
Q o @

Sg=-83-51Q2Q3 EiEqE3
(CLNJ)



Conclusion

 Essential to learn the linear latent hierarchical structure
* Provide sufficient conditions for structural identifiability

* Future work: n-factor model, nonlinear hierarchical structure...



