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Latent hierarchical structure

Is it possible to find latent variable Li and their causal relations 
only from measured variables Xi?



Problem Definition

Observational dataset

𝑋! 𝑋" … 𝑋!#
1 𝑋!,! 𝑋",! … 𝑋!#,!
2 𝑋!," 𝑋"," ⁝ 𝑋!#,"
3. 𝑋!,% . 𝑋",% . … 𝑋!#,% .

⁝ ⁝ ⁝ ⁝ ⁝
𝑛 𝑋!,& . 𝑋",& . … 𝑋!#,&

.

Latent hierarchical structure

Is it possible to find latent variable Li and their causal relations 
only from measured variables Xi?

Latent variable & 
their causal relations

Discovery



Linear, Non-Gaussian 
Latent Hierarchical Model 

• Measured variables may not be directly 
causally related but were generated by 
causally related latent variables

• Some latent variables have only latent 
variables as children (i.e., no observed 
children)

• Assume variables were generated by the 
Linear, Non-Gaussian Latent Hierarchical 
Model (LiNGLaH)

Find a sufficient graphical condition that renders the causal 
structure of a latent hierarchical model identifiable?



Linear, Non-Gaussian 
Latent Hierarchical Model 

• Measured variables may not be directly 
causally related but were generated by 
causally related latent variables

• Some latent variables have only latent 
variables as children (i.e., no observed 
children)

• Assume variables were generated by the 
Linear, Non-Gaussian Latent Hierarchical 
Model (LiNGLaH)

+ Minimal Latent Hierarchical Structure Condition: 
(1) each latent variable has at least three neighbors, and 
(2) each latent variable has at least two pure children (which can be either 
latent or observed)



Model Estimation

o Step 1: locate all latent variables
• P1. Identify causal clusters 

from the active variable set
• P2. Determine the number of 

new latent variables that need 
to be introduced for these 
clusters

• P3. Update the active variable 
set

o Step 2: infer the causal structure 
among the identified latent variables
• P1. identify the causal order 

among latent variables 
• P2. remove redundant edges
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Simulation
o 4 cases, with different latent structures, including tree-based and 

measurement-based structures

o Can we recover the ground-truth structure, including causal direction?

• Structure Recovery Error rate
• Error in the Number of Latent variable sets
• Correct ordering rate
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Ours

• Consistent with the hypothesized 

model given in Himi et al., 2019

Application to multitasking behavior Data  

• The data set consists of 202 samples



• Essential to learn the linear latent hierarchical structure 

• Provide sufficient conditions for structural identifiability

• Future work: n-factor model, nonlinear hierarchical structure…

Conclusion


