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Optimizing Vaccine Freeze Drying Process

e Goal: Tune experimental conditions (parameters)
e Shelf temperature
e Chamber pressure
e Objectives:
o Efficiency of drying step (maximize)
e Product quality (maximize)
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Multi-Objective Bayesian Optimization

Goal: optimize a vector-valued black-box function that:

X f(x) o |s expensive to. evaluat.e (%, time)
e Does not provide gradients
magﬂc f(x) fx) = (fY%),..., fMx) c RM
X<

9 = {x., f(x;
l { l f( l)} e Use a surrogate model that

n is fast to evaluate and
> > Acquisition —_— brovides gradients

e Use acquisition functions to
berform explore/exploit

Numerical ,
—> X » Generate candidate
points to evaluate next

max a(x)
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to Input Nolise
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Many Manutacturing Processes are Subject
to Input Nolise

e [he realized parameters are different than intended
e [he performance metrics might degrade
e Sometimes the effects are catastrophic
e Example: In vaccine freeze drying,
e Higher temperatures are more efticient, but too high
of a temperature can ruin the product
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Problem Formulation

e \We consider the setting where:

e We can sample from the input noise process P(&; x)

e \We have access to a simulator during optimization,
without input noise

e Input noise Is present at implementation time

e [he way Iin which input noise affects the input

parameters x ¢ € is known (e.g. additive, multiplicative,
etc).



Quantitying Risk



Quantitying Risk

Example risk measures



Quantitying Risk

Example risk measures
» Expected Bayes Risk: Eg_peg)| flx ¢ &)]



Quantitying Risk

Example risk measures
» Expected Bayes Risk: Eg_peg)| flx ¢ &)]

, Worst case: min [f(x ¢ €)]
E~P(&)



Quantitying Risk

Example risk measures
» Expected Bayes Risk: Eg_peg)| flx ¢ &)]

, Worst case: min [f(x ¢ €)]
E~P(&)

o Value-At-Risk: lower bound on f(x ¢ &) with probability o
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Toy lllustration
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Toy lllustration
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Multivariate Value-At Risk (MVaR)

Definition 4.2. The MVAR of f for a given point & and
confidence level o € [0, 1] is:
MVAR,, |f(x o €&)| =

PARETO({z € R : P[f(z 0 &) > z| > a}).
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A MVaR[f(x;1¢&)] A MVaR[{(x ¢ ¢)]
m f(x)) B f(x)
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Global MVaR

Definition 4.3. The M VAR for a set of points X 1s:

A MVaR[f(x; ¢&)]
MVAR, [{f (% © &) }uex| = 1

A MVaR[f(x, ¢&)]
MVaR[f(x; o &)]

* * *
% MVaR over x; ,x, ,x;
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PARETO( | ] MVaR, [f(a:og)}).

xrxec X

Our optimization goal is to "
optimize global MVaR T T bjective 1
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Issues with Direct MVaR Optimization

e MVaR is expensive to compute
e Requires approximating multivariate CDFs
e EXxponential in the number of objectives



Relationship Between MVaR and
Scalarizations

Chebyshev Scalarization sy, w]

Chebyshev Scalarization:

sy, w| = mimw,y,
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VaR of Scalarization

Chebyshev Scalarization s[f(x¢ &), w]
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VaR of Scalarization

Chebyshev Scalarization s[f(x¢ &), w] Value-at-Risk of Chebyshev Scalarization
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VaR of Scalarization

Chebyshev Scalarization s[f(x¢ &), W] Value-at-Risk of Chebyshev Scalarization sif(x o &), wl=v
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VaR of Scalarization

Chebyshev Scalarization s[f(x¢ &), w] Value-at-Risk of Chebyshev Scalarization Peformance Guarantee
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Chebyshev Scalarization s[f(x¢ &), w] Value-at-Risk of Chebyshev Scalarization Peformance Guarantee
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Bijection (Main Result)

Chebyshev Scalarization s[f(x¢ &), w] Value-at-Risk of Chebyshev Scalarization Peformance Guarantee
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MARS: MVaR Approximation via Random
Scalarizations

Algorithm 1 MARS
® The bijeCtiOn m()tivates 1: Input: input noise distribution P(&), search space X,

black-box objectives f : X — R confidence level o

a generative process 2: Tnitialize Dy + 0, GPy + GP(0, k)

C . : 3: forn=1to N do
for optimizing different IS RIS

MVaR trade-offs USing Set objective to be [(x) = VAR, (s|f(x ¢ &), w])

S
6: T, < argmax,.y acq(x,!)
- I . 7:  Evaluate f(x,), D, < D,_1 U{x,, f(x,)}
Bayesian Optimization [
9:

Update posterior GP,, conditional on {x,,, f(x,)}

end for




Experiment: Penicillin Production

e Objectives: | Penicillin
o Penicillin yield (maximize)
e CO2 output (minimize)

e [ime-to-ferment (minimize)

e [/ Parameters:

Parameter Noise Level

Log MVAR HV Regret

Culture Volume 3%
Biomass Concentration 3%
Temperature 0.5%
Glucose Concentration 29
Substrate Feed Rate 1%

Substrate Feed Concentration 1% 4}0 60 . 30 100
H™ Concentration 1% Function Evaluations

Sobol — qNParEGO — qNEHVI Exp-gNParEGO —— MARS-NEI



Paper and Open Source Code

Paper: https://arxiv.org/abs/2202.07549

Code: github.com/facebookresearch/robust_mobo

Y Bolorech
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