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Optimizing Vaccine Freeze Drying Process

• Goal: Tune experimental conditions (parameters)
• Shelf temperature
• Chamber pressure
• Objectives:
• Efficiency of drying step (maximize)
• Product quality (maximize)
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• Generate candidate 
points to evaluate next

Numerical 
Optimization

Surrogate 
Model

Acquisition 
Function

• Use a surrogate model that 
is fast to evaluate and 
provides gradients


• Use acquisition functions to 
perform explore/exploit

𝒟 = {xi, f(xi)}

α(x)̂f(x)

max
x∈𝒳

α(x)
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• The realized parameters are different than intended
• The performance metrics might degrade
•  Sometimes the effects are catastrophic
• Example: In vaccine freeze drying,

• Higher temperatures are more efficient, but too high 
of a temperature can ruin the product
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Problem Formulation
• We consider the setting where:

• We can sample from the input noise process P(ξ; x)
• We have access to a simulator during optimization, 

without input noise
• Input noise is present at implementation time
• The way in which input noise affects the input 

parameters  is known (e.g. additive, multiplicative, 
etc).

x ⋄ ξ
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Quantifying Risk

Example risk measures

• Expected Bayes Risk: 𝔼ξ∼P(ξ)[ f(x ⋄ ξ)]

• Worst case: min
ξ∼P(ξ)

[ f(x ⋄ ξ)]

• Value-At-Risk: lower bound on  with probability f(x ⋄ ξ) α
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Multivariate Value-At Risk (MVaR)
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Robust Multi-Objective Bayesian Optimization Under Input Noise

objective independently or using the expectation risk mea-
sure may conceal underlying variation and risk. Indeed, the
results in Appendix I show that optimizing an expectation
risk measure on this problem results in poor performance.

In contrast with VAR and the expectation risk measure
which map a random variable to single scalar or vector,
MVAR maps a random variable to a non-dominated set

of vectors in the outcome space that are dominated by ↵-
fraction of all possible realizations, where ↵ 2 [0, 1] is a
hyperparameter set by the practitioner. That is, each vector
in the MVAR set corresponds to an objective specification
that a design will meet with probability � ↵. Therefore, ↵
is an interpretable risk level that can be valuable in manu-
facturing applications where one wishes to find the PF of all
objective specifications with a guaranteed yield fraction (↵).

Definition 4.2. The MVAR of f for a given point x and
confidence level ↵ 2 [0, 1] is:

MVAR↵

⇥
f(x ⇧ ⇠)

⇤
=

PARETO
��

z 2 RM : P
⇥
f(x ⇧ ⇠) � z

⇤
� ↵

 �
.

The MVAR set over X specifies objective vectors z such
that there exists a known design x 2 X with corresponding
random objectives f(x ⇧ ⇠) under P (⇠) that dominate z
with probability � ↵.
Definition 4.3. The MVAR for a set of points X is:

MVAR↵

⇥
{f(x ⇧ ⇠)}x2X

⇤
=

PARETO

✓ [

x2X

MVAR↵

⇥
f(x ⇧ ⇠)

⇤◆
.

The global MVAR across the design space, MVAR↵

⇥
{f(x⇧

⇠)}x2X
⇤
, is a robust analogue of the PF in the standard MO

setting. The concept of the MVAR of a set of design points
X is a novel contribution of this work.

Optimization Goal In this work, our goal is to identify
the MVAR set across the design space: MVAR↵

⇥
{f(x ⇧

⇠)}x2X
⇤
. Given an approximate MVAR set across the de-

sign space, a decision-maker can pick a design according to
their preferences. Similar to the standard MO setting, the
HV of the MVAR set across the design space can be used
to evaluate optimization performance.

5. Optimizing MVAR
A natural approach for optimizing MVAR is to directly
maximize the HV dominated by the MVAR set. Although
MVAR of a given point typically cannot be evaluated di-
rectly, it can be approximated using n⇠ MC samples of
⇠, provided that independent samples can be draw from
the noise process. Thus, evaluating the MVAR set across
the previously evaluated designs using the surrogate re-
quires sampling from the posterior of P (f |D) evaluated

jointly at x1 ⇧ ⇠i, . . . ,xn ⇧ ⇠i for i = 1, ..., n⇠, where
X1:n := {x1, ...,xn} are the previously evaluated designs.
Since {f(x0

⇧ ⇠)}x02X1:n is typically not observed, the
corresponding posterior predictions may have large uncer-
tainties. In order to get a reliable estimate of MVAR, we
would need to integrate over the posterior distribution of
{f(x0

⇧ ⇠)}x02X1:n . qNEHVI (Daulton et al., 2021a) is
a variant of EHVI that integrates over the uncertainty in
function values at previously evaluated designs. This makes
qNEHVI suitable for optimizing MVAR.

However, several computational issues—including time
complexity that is exponential in the number of objectives
and exponential in the size of MVAR↵

⇥
f(x ⇧ ⇠)

⇤
—make

it infeasible to directly optimize MVAR with qNEHVI in
many settings. We defer a detailed discussion to Appendix D
and present an empirical evaluation in Appendix I.

5.1. Relationship between MVAR and Scalarizations

An alternative to direct optimization of the MVAR set is to
apply a scalarization to the objectives and use a standard
risk measure on the scalarized objective. Unlike the use of
independent risk measures on each objective, this approach
accounts for the correlation between outcomes induced by
the input perturbation. In this section, we present our main
theoretical result: under limited assumptions, there exists a
bijection, based on VAR, that maps a particular family of
scalarizations—Chebyshev scalarizations (Kaisa, 1999)—to
points in the MVAR set. In other words, each point in the
MVAR set corresponds to a particular set of scalarization
weights. This means that we can recover the entire MVAR
set using these scalarizations, without any loss. Proofs and
additional theoretical results including extensions to the
constrained setting are provided in Appendix A.

Definition 5.1. Let w 2 �M�1
+ , where �M�1

+ denotes
the positive (M � 1)-simplex, and let r 2 RM . The
Chebyshev scalarization s[y,w, r] is given by s[y,w, r] =
mini wi(yi � ri), where ·i denotes the i

th dimension.4

The contour in the left plot in Figure 2 shows the Cheby-
shev scalarization for a fixed w for the two-objective toy
problem from Figure 1 and illustrates a connection between
Pareto dominance and the Chebyshev scalarization, which
we formalize below. The black points are function values
under sampled perturbations for a single design x. The
center plot in Figure 2 shows the distribution of Chebyshev
scalarization values for a given w and the black line indi-
cates the ↵-level VAR. The right plot in Figure 2 illustrates
that using the VAR of a Chebyshev scalarization, we can
deduce a point z such that the function values under the

4Typically, f is scaled to the unit cube using the r as the lower
bound before applying the scalarization. Since the scaled reference
point is 0, hence forth, we omit r for brevity. See Appendix G.1
for details.
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Robust Multi-Objective Bayesian Optimization Under Input Noise

objective independently or using the expectation risk mea-
sure may conceal underlying variation and risk. Indeed, the
results in Appendix I show that optimizing an expectation
risk measure on this problem results in poor performance.

In contrast with VAR and the expectation risk measure
which map a random variable to single scalar or vector,
MVAR maps a random variable to a non-dominated set

of vectors in the outcome space that are dominated by ↵-
fraction of all possible realizations, where ↵ 2 [0, 1] is a
hyperparameter set by the practitioner. That is, each vector
in the MVAR set corresponds to an objective specification
that a design will meet with probability � ↵. Therefore, ↵
is an interpretable risk level that can be valuable in manu-
facturing applications where one wishes to find the PF of all
objective specifications with a guaranteed yield fraction (↵).

Definition 4.2. The MVAR of f for a given point x and
confidence level ↵ 2 [0, 1] is:

MVAR↵

⇥
f(x ⇧ ⇠)

⇤
=

PARETO
��

z 2 RM : P
⇥
f(x ⇧ ⇠) � z

⇤
� ↵

 �
.

The MVAR set over X specifies objective vectors z such
that there exists a known design x 2 X with corresponding
random objectives f(x ⇧ ⇠) under P (⇠) that dominate z
with probability � ↵.
Definition 4.3. The MVAR for a set of points X is:

MVAR↵

⇥
{f(x ⇧ ⇠)}x2X

⇤
=

PARETO

✓ [

x2X

MVAR↵

⇥
f(x ⇧ ⇠)

⇤◆
.

The global MVAR across the design space, MVAR↵

⇥
{f(x⇧

⇠)}x2X
⇤
, is a robust analogue of the PF in the standard MO

setting. The concept of the MVAR of a set of design points
X is a novel contribution of this work.

Optimization Goal In this work, our goal is to identify
the MVAR set across the design space: MVAR↵

⇥
{f(x ⇧

⇠)}x2X
⇤
. Given an approximate MVAR set across the de-

sign space, a decision-maker can pick a design according to
their preferences. Similar to the standard MO setting, the
HV of the MVAR set across the design space can be used
to evaluate optimization performance.

5. Optimizing MVAR
A natural approach for optimizing MVAR is to directly
maximize the HV dominated by the MVAR set. Although
MVAR of a given point typically cannot be evaluated di-
rectly, it can be approximated using n⇠ MC samples of
⇠, provided that independent samples can be draw from
the noise process. Thus, evaluating the MVAR set across
the previously evaluated designs using the surrogate re-
quires sampling from the posterior of P (f |D) evaluated

jointly at x1 ⇧ ⇠i, . . . ,xn ⇧ ⇠i for i = 1, ..., n⇠, where
X1:n := {x1, ...,xn} are the previously evaluated designs.
Since {f(x0

⇧ ⇠)}x02X1:n is typically not observed, the
corresponding posterior predictions may have large uncer-
tainties. In order to get a reliable estimate of MVAR, we
would need to integrate over the posterior distribution of
{f(x0

⇧ ⇠)}x02X1:n . qNEHVI (Daulton et al., 2021a) is
a variant of EHVI that integrates over the uncertainty in
function values at previously evaluated designs. This makes
qNEHVI suitable for optimizing MVAR.

However, several computational issues—including time
complexity that is exponential in the number of objectives
and exponential in the size of MVAR↵

⇥
f(x ⇧ ⇠)

⇤
—make

it infeasible to directly optimize MVAR with qNEHVI in
many settings. We defer a detailed discussion to Appendix D
and present an empirical evaluation in Appendix I.

5.1. Relationship between MVAR and Scalarizations

An alternative to direct optimization of the MVAR set is to
apply a scalarization to the objectives and use a standard
risk measure on the scalarized objective. Unlike the use of
independent risk measures on each objective, this approach
accounts for the correlation between outcomes induced by
the input perturbation. In this section, we present our main
theoretical result: under limited assumptions, there exists a
bijection, based on VAR, that maps a particular family of
scalarizations—Chebyshev scalarizations (Kaisa, 1999)—to
points in the MVAR set. In other words, each point in the
MVAR set corresponds to a particular set of scalarization
weights. This means that we can recover the entire MVAR
set using these scalarizations, without any loss. Proofs and
additional theoretical results including extensions to the
constrained setting are provided in Appendix A.

Definition 5.1. Let w 2 �M�1
+ , where �M�1

+ denotes
the positive (M � 1)-simplex, and let r 2 RM . The
Chebyshev scalarization s[y,w, r] is given by s[y,w, r] =
mini wi(yi � ri), where ·i denotes the i

th dimension.4

The contour in the left plot in Figure 2 shows the Cheby-
shev scalarization for a fixed w for the two-objective toy
problem from Figure 1 and illustrates a connection between
Pareto dominance and the Chebyshev scalarization, which
we formalize below. The black points are function values
under sampled perturbations for a single design x. The
center plot in Figure 2 shows the distribution of Chebyshev
scalarization values for a given w and the black line indi-
cates the ↵-level VAR. The right plot in Figure 2 illustrates
that using the VAR of a Chebyshev scalarization, we can
deduce a point z such that the function values under the

4Typically, f is scaled to the unit cube using the r as the lower
bound before applying the scalarization. Since the scaled reference
point is 0, hence forth, we omit r for brevity. See Appendix G.1
for details.

Our optimization goal is to 
optimize global MVaR
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Issues with Direct MVaR Optimization

• MVaR is expensive to compute
• Requires approximating multivariate CDFs 
• Exponential in the number of objectives



Relationship Between MVaR and 
Scalarizations

s[y, w] = min
i

wiyi

w ∈ ΔM−1
+

Chebyshev Scalarization:
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Robust Multi-Objective Bayesian Optimization Under Input Noise

by the objectives alone, including robustness to input noise.
However, simply having a diverse set of candidates does not
necessarily imply robustness, and CAS alone cannot pro-
duce any guarantees on robustness to input noise. Methods
such as CAS would require a post-hoc analysis using the
data collected during optimization to analyze the sensitivity
of the solutions to input noise (Calandra and Peters, 2014).

Approaching robust design by decoupling data collection
and sensitivity analysis is central to the Taguchi method
(Taguchi, 1989). Data acquisition often revolves around
finding designs that balance the mean and variance of the
sensitive objective under input noise (Beyer and Sendhoff,
2007). Do et al. (2021) propose an approach in this vein for
the two-objective setting where only one objective is subject
to input noise. However, the authors do not aim to learn
trade-offs with high probability robustness guarantees, and
the method does not handle multiple sensitive objectives. In
contrast with the Taguchi method, we aim to unify data col-
lection and sensitivity analysis by selecting designs that are
believed to yield high-probability performance guarantees.

Outside the BO literature, robust MO optimization has been
studied using either EAs (Gupta and Deb, 2005; He et al.,
2019) or assuming access to the explicit mathematical pro-
gramming formulation of the problem (Majewski et al.,
2017; Roberts et al., 2018). Those works have focused on
finding the Pareto frontier of the expectation or the worst-
case objectives or on finding the Pareto frontier of the nomi-
nal objectives with additional constraints on the deviation
from the nominal values (Deb and Gupta, 2005; Avigad and
Branke, 2008). Some works have considered conceptual
properties of different scalarization methods (Ide and Köbis,
2014), but not in relation to MVAR. EAs that are robust to
input noise are not applicable to the small evaluation bud-
get regime that we consider because they typically require
a large number of function evaluations (Deb and Gupta,
2005). Even methods that combine EAs with GPs require
thousands of evaluations per design (Zhou et al., 2018).

As a final differentiator from prior work, we consider the
practical setting where there are additional black-box con-
straints that are sensitive to input noise (Marzat et al., 2013;
Li and Li, 2015), which is a subject addressed by only a
few BO methods (Beland and Nair, 2017) even in the single
objective case.

4. Multi-Objective Optimization with Noisy
Inputs

In many practical scenarios, the nominal performance of
a design can be evaluated by means of a simulation (e.g.,
by simulating the pharmaceutical process under nominal
operating conditions). We consider the setting where we
can simulate f(x) for any given design x 2 X , but that
the design is subject to noise ⇠(x) from a known noise

process ⇠(x) ⇠ P (⇠;x) at implementation time.3 The
realized system performance is given by the random variable
f(x ⇧ ⇠), where x ⇧ ⇠ denotes any known function g(x, ⇠)
(e.g. for additive noise ⇧ is simply +). For an extended
problem formulation including black-box constraints, see
Appendix A.4.

In robust optimization, the goal is often to optimize a risk

measure ⇢[f(x ⇧ ⇠)] that maps a random variable to a statis-
tic of its distribution. A common risk measure is the ex-
pectation over the input noise distribution (Deb and Gupta,
2005; Toscano-Palmerin and Frazier, 2018; Fröhlich et al.,
2020), E⇠⇠P (⇠)[f(x ⇧ ⇠)], which can be used instead of
the random variable f(x ⇧ ⇠) and optimized via standard
multi-objective optimization methods. We propose the first
MOBO methods for optimizing expectation objectives in
Appendix F. Despite its widespread use, the expectation
risk measure may not always align with the practitioner’s
true robustness goals. Often, one would prefer solutions
with objectives that are better than some performance spec-
ification z 2 RM with high probability (e.g. to maximize
production yield) (Sarykalin et al., 2008). Hence, in the
single-objective setting, probabilistic risk measures such as
value-at-risk (VAR) are frequently used.
Definition 4.1. Given input noise ⇠ ⇠ P (⇠) where ⇠ 2 Rd

and a confidence level ↵ 2 [0, 1], the value-at-risk for a
given point x is:

VAR↵

⇥
f(x ⇧ ⇠)

⇤
= sup{z 2 R : P

⇥
f(x ⇧ ⇠) � z

⇤
� ↵}.

VAR↵

⇥
s[f(x⇧⇠),w]

⇤
= sup{z 2 R : P

⇥
s[f(x⇧⇠),w] � z

⇤
� ↵}.

Although several BO methods exist for optimizing VAR
(Cakmak et al., 2020; Nguyen et al., 2021b), they cannot di-
rectly be used in the MO setting because VAR is not defined
for multivariate random variables. A näive way to extend
VAR to the MO setting would be to consider the VAR of
each objective independently. However, this ignores the fact
that all M objectives are evaluated at the same realization of
x⇧⇠. Considering the VAR of each objective independently
typically leads to overly optimistic risk estimates because
objectives under input noise are not typically simultaneously

greater than or equal to their respective independent VARs
(i.e. the (1 � ↵) - quantiles) with probability � ↵. Thus
it is important to use risk measures such as multivariate
value-at-risk (MVAR) that account for the joint distribution
of the objectives (Prèkopa, 2012).

This is illustrated in the center plot in Figure 1. Under input
noise, the objective values are correlated, which underscores
the importance of accounting for the joint distribution of
the objectives in measures of robustness. In addition, the

3For brevity, we omit the dependency on x in our notation and
write ⇠ and P (⇠) going forward.
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by the objectives alone, including robustness to input noise.
However, simply having a diverse set of candidates does not
necessarily imply robustness, and CAS alone cannot pro-
duce any guarantees on robustness to input noise. Methods
such as CAS would require a post-hoc analysis using the
data collected during optimization to analyze the sensitivity
of the solutions to input noise (Calandra and Peters, 2014).

Approaching robust design by decoupling data collection
and sensitivity analysis is central to the Taguchi method
(Taguchi, 1989). Data acquisition often revolves around
finding designs that balance the mean and variance of the
sensitive objective under input noise (Beyer and Sendhoff,
2007). Do et al. (2021) propose an approach in this vein for
the two-objective setting where only one objective is subject
to input noise. However, the authors do not aim to learn
trade-offs with high probability robustness guarantees, and
the method does not handle multiple sensitive objectives. In
contrast with the Taguchi method, we aim to unify data col-
lection and sensitivity analysis by selecting designs that are
believed to yield high-probability performance guarantees.

Outside the BO literature, robust MO optimization has been
studied using either EAs (Gupta and Deb, 2005; He et al.,
2019) or assuming access to the explicit mathematical pro-
gramming formulation of the problem (Majewski et al.,
2017; Roberts et al., 2018). Those works have focused on
finding the Pareto frontier of the expectation or the worst-
case objectives or on finding the Pareto frontier of the nomi-
nal objectives with additional constraints on the deviation
from the nominal values (Deb and Gupta, 2005; Avigad and
Branke, 2008). Some works have considered conceptual
properties of different scalarization methods (Ide and Köbis,
2014), but not in relation to MVAR. EAs that are robust to
input noise are not applicable to the small evaluation bud-
get regime that we consider because they typically require
a large number of function evaluations (Deb and Gupta,
2005). Even methods that combine EAs with GPs require
thousands of evaluations per design (Zhou et al., 2018).

As a final differentiator from prior work, we consider the
practical setting where there are additional black-box con-
straints that are sensitive to input noise (Marzat et al., 2013;
Li and Li, 2015), which is a subject addressed by only a
few BO methods (Beland and Nair, 2017) even in the single
objective case.

4. Multi-Objective Optimization with Noisy
Inputs

In many practical scenarios, the nominal performance of
a design can be evaluated by means of a simulation (e.g.,
by simulating the pharmaceutical process under nominal
operating conditions). We consider the setting where we
can simulate f(x) for any given design x 2 X , but that
the design is subject to noise ⇠(x) from a known noise

process ⇠(x) ⇠ P (⇠;x) at implementation time.3 The
realized system performance is given by the random variable
f(x ⇧ ⇠), where x ⇧ ⇠ denotes any known function g(x, ⇠)
(e.g. for additive noise ⇧ is simply +). For an extended
problem formulation including black-box constraints, see
Appendix A.4.

In robust optimization, the goal is often to optimize a risk

measure ⇢[f(x ⇧ ⇠)] that maps a random variable to a statis-
tic of its distribution. A common risk measure is the ex-
pectation over the input noise distribution (Deb and Gupta,
2005; Toscano-Palmerin and Frazier, 2018; Fröhlich et al.,
2020), E⇠⇠P (⇠)[f(x ⇧ ⇠)], which can be used instead of
the random variable f(x ⇧ ⇠) and optimized via standard
multi-objective optimization methods. We propose the first
MOBO methods for optimizing expectation objectives in
Appendix F. Despite its widespread use, the expectation
risk measure may not always align with the practitioner’s
true robustness goals. Often, one would prefer solutions
with objectives that are better than some performance spec-
ification z 2 RM with high probability (e.g. to maximize
production yield) (Sarykalin et al., 2008). Hence, in the
single-objective setting, probabilistic risk measures such as
value-at-risk (VAR) are frequently used.
Definition 4.1. Given input noise ⇠ ⇠ P (⇠) where ⇠ 2 Rd

and a confidence level ↵ 2 [0, 1], the value-at-risk for a
given point x is:

VAR↵

⇥
f(x ⇧ ⇠)

⇤
= sup{z 2 R : P

⇥
f(x ⇧ ⇠) � z

⇤
� ↵}.

VAR↵

⇥
s[f(x⇧⇠),w]

⇤
= sup{z 2 R : P

⇥
s[f(x⇧⇠),w] � z

⇤
� ↵}.

Although several BO methods exist for optimizing VAR
(Cakmak et al., 2020; Nguyen et al., 2021b), they cannot di-
rectly be used in the MO setting because VAR is not defined
for multivariate random variables. A näive way to extend
VAR to the MO setting would be to consider the VAR of
each objective independently. However, this ignores the fact
that all M objectives are evaluated at the same realization of
x⇧⇠. Considering the VAR of each objective independently
typically leads to overly optimistic risk estimates because
objectives under input noise are not typically simultaneously

greater than or equal to their respective independent VARs
(i.e. the (1 � ↵) - quantiles) with probability � ↵. Thus
it is important to use risk measures such as multivariate
value-at-risk (MVAR) that account for the joint distribution
of the objectives (Prèkopa, 2012).

This is illustrated in the center plot in Figure 1. Under input
noise, the objective values are correlated, which underscores
the importance of accounting for the joint distribution of
the objectives in measures of robustness. In addition, the

3For brevity, we omit the dependency on x in our notation and
write ⇠ and P (⇠) going forward.
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by the objectives alone, including robustness to input noise.
However, simply having a diverse set of candidates does not
necessarily imply robustness, and CAS alone cannot pro-
duce any guarantees on robustness to input noise. Methods
such as CAS would require a post-hoc analysis using the
data collected during optimization to analyze the sensitivity
of the solutions to input noise (Calandra and Peters, 2014).

Approaching robust design by decoupling data collection
and sensitivity analysis is central to the Taguchi method
(Taguchi, 1989). Data acquisition often revolves around
finding designs that balance the mean and variance of the
sensitive objective under input noise (Beyer and Sendhoff,
2007). Do et al. (2021) propose an approach in this vein for
the two-objective setting where only one objective is subject
to input noise. However, the authors do not aim to learn
trade-offs with high probability robustness guarantees, and
the method does not handle multiple sensitive objectives. In
contrast with the Taguchi method, we aim to unify data col-
lection and sensitivity analysis by selecting designs that are
believed to yield high-probability performance guarantees.

Outside the BO literature, robust MO optimization has been
studied using either EAs (Gupta and Deb, 2005; He et al.,
2019) or assuming access to the explicit mathematical pro-
gramming formulation of the problem (Majewski et al.,
2017; Roberts et al., 2018). Those works have focused on
finding the Pareto frontier of the expectation or the worst-
case objectives or on finding the Pareto frontier of the nomi-
nal objectives with additional constraints on the deviation
from the nominal values (Deb and Gupta, 2005; Avigad and
Branke, 2008). Some works have considered conceptual
properties of different scalarization methods (Ide and Köbis,
2014), but not in relation to MVAR. EAs that are robust to
input noise are not applicable to the small evaluation bud-
get regime that we consider because they typically require
a large number of function evaluations (Deb and Gupta,
2005). Even methods that combine EAs with GPs require
thousands of evaluations per design (Zhou et al., 2018).

As a final differentiator from prior work, we consider the
practical setting where there are additional black-box con-
straints that are sensitive to input noise (Marzat et al., 2013;
Li and Li, 2015), which is a subject addressed by only a
few BO methods (Beland and Nair, 2017) even in the single
objective case.

4. Multi-Objective Optimization with Noisy
Inputs

In many practical scenarios, the nominal performance of
a design can be evaluated by means of a simulation (e.g.,
by simulating the pharmaceutical process under nominal
operating conditions). We consider the setting where we
can simulate f(x) for any given design x 2 X , but that
the design is subject to noise ⇠(x) from a known noise

process ⇠(x) ⇠ P (⇠;x) at implementation time.3 The
realized system performance is given by the random variable
f(x ⇧ ⇠), where x ⇧ ⇠ denotes any known function g(x, ⇠)
(e.g. for additive noise ⇧ is simply +). For an extended
problem formulation including black-box constraints, see
Appendix A.4.

In robust optimization, the goal is often to optimize a risk

measure ⇢[f(x ⇧ ⇠)] that maps a random variable to a statis-
tic of its distribution. A common risk measure is the ex-
pectation over the input noise distribution (Deb and Gupta,
2005; Toscano-Palmerin and Frazier, 2018; Fröhlich et al.,
2020), E⇠⇠P (⇠)[f(x ⇧ ⇠)], which can be used instead of
the random variable f(x ⇧ ⇠) and optimized via standard
multi-objective optimization methods. We propose the first
MOBO methods for optimizing expectation objectives in
Appendix F. Despite its widespread use, the expectation
risk measure may not always align with the practitioner’s
true robustness goals. Often, one would prefer solutions
with objectives that are better than some performance spec-
ification z 2 RM with high probability (e.g. to maximize
production yield) (Sarykalin et al., 2008). Hence, in the
single-objective setting, probabilistic risk measures such as
value-at-risk (VAR) are frequently used.
Definition 4.1. Given input noise ⇠ ⇠ P (⇠) where ⇠ 2 Rd

and a confidence level ↵ 2 [0, 1], the value-at-risk for a
given point x is:

VAR↵

⇥
f(x ⇧ ⇠)

⇤
= sup{z 2 R : P

⇥
f(x ⇧ ⇠) � z

⇤
� ↵}.

VAR↵

⇥
s[f(x⇧⇠),w]

⇤
= sup{z 2 R : P

⇥
s[f(x⇧⇠),w] � z

⇤
� ↵}.

Although several BO methods exist for optimizing VAR
(Cakmak et al., 2020; Nguyen et al., 2021b), they cannot di-
rectly be used in the MO setting because VAR is not defined
for multivariate random variables. A näive way to extend
VAR to the MO setting would be to consider the VAR of
each objective independently. However, this ignores the fact
that all M objectives are evaluated at the same realization of
x⇧⇠. Considering the VAR of each objective independently
typically leads to overly optimistic risk estimates because
objectives under input noise are not typically simultaneously

greater than or equal to their respective independent VARs
(i.e. the (1 � ↵) - quantiles) with probability � ↵. Thus
it is important to use risk measures such as multivariate
value-at-risk (MVAR) that account for the joint distribution
of the objectives (Prèkopa, 2012).

This is illustrated in the center plot in Figure 1. Under input
noise, the objective values are correlated, which underscores
the importance of accounting for the joint distribution of
the objectives in measures of robustness. In addition, the

3For brevity, we omit the dependency on x in our notation and
write ⇠ and P (⇠) going forward.
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by the objectives alone, including robustness to input noise.
However, simply having a diverse set of candidates does not
necessarily imply robustness, and CAS alone cannot pro-
duce any guarantees on robustness to input noise. Methods
such as CAS would require a post-hoc analysis using the
data collected during optimization to analyze the sensitivity
of the solutions to input noise (Calandra and Peters, 2014).

Approaching robust design by decoupling data collection
and sensitivity analysis is central to the Taguchi method
(Taguchi, 1989). Data acquisition often revolves around
finding designs that balance the mean and variance of the
sensitive objective under input noise (Beyer and Sendhoff,
2007). Do et al. (2021) propose an approach in this vein for
the two-objective setting where only one objective is subject
to input noise. However, the authors do not aim to learn
trade-offs with high probability robustness guarantees, and
the method does not handle multiple sensitive objectives. In
contrast with the Taguchi method, we aim to unify data col-
lection and sensitivity analysis by selecting designs that are
believed to yield high-probability performance guarantees.

Outside the BO literature, robust MO optimization has been
studied using either EAs (Gupta and Deb, 2005; He et al.,
2019) or assuming access to the explicit mathematical pro-
gramming formulation of the problem (Majewski et al.,
2017; Roberts et al., 2018). Those works have focused on
finding the Pareto frontier of the expectation or the worst-
case objectives or on finding the Pareto frontier of the nomi-
nal objectives with additional constraints on the deviation
from the nominal values (Deb and Gupta, 2005; Avigad and
Branke, 2008). Some works have considered conceptual
properties of different scalarization methods (Ide and Köbis,
2014), but not in relation to MVAR. EAs that are robust to
input noise are not applicable to the small evaluation bud-
get regime that we consider because they typically require
a large number of function evaluations (Deb and Gupta,
2005). Even methods that combine EAs with GPs require
thousands of evaluations per design (Zhou et al., 2018).

As a final differentiator from prior work, we consider the
practical setting where there are additional black-box con-
straints that are sensitive to input noise (Marzat et al., 2013;
Li and Li, 2015), which is a subject addressed by only a
few BO methods (Beland and Nair, 2017) even in the single
objective case.

4. Multi-Objective Optimization with Noisy
Inputs

In many practical scenarios, the nominal performance of
a design can be evaluated by means of a simulation (e.g.,
by simulating the pharmaceutical process under nominal
operating conditions). We consider the setting where we
can simulate f(x) for any given design x 2 X , but that
the design is subject to noise ⇠(x) from a known noise

process ⇠(x) ⇠ P (⇠;x) at implementation time.3 The
realized system performance is given by the random variable
f(x ⇧ ⇠), where x ⇧ ⇠ denotes any known function g(x, ⇠)
(e.g. for additive noise ⇧ is simply +). For an extended
problem formulation including black-box constraints, see
Appendix A.4.

In robust optimization, the goal is often to optimize a risk

measure ⇢[f(x ⇧ ⇠)] that maps a random variable to a statis-
tic of its distribution. A common risk measure is the ex-
pectation over the input noise distribution (Deb and Gupta,
2005; Toscano-Palmerin and Frazier, 2018; Fröhlich et al.,
2020), E⇠⇠P (⇠)[f(x ⇧ ⇠)], which can be used instead of
the random variable f(x ⇧ ⇠) and optimized via standard
multi-objective optimization methods. We propose the first
MOBO methods for optimizing expectation objectives in
Appendix F. Despite its widespread use, the expectation
risk measure may not always align with the practitioner’s
true robustness goals. Often, one would prefer solutions
with objectives that are better than some performance spec-
ification z 2 RM with high probability (e.g. to maximize
production yield) (Sarykalin et al., 2008). Hence, in the
single-objective setting, probabilistic risk measures such as
value-at-risk (VAR) are frequently used.
Definition 4.1. Given input noise ⇠ ⇠ P (⇠) where ⇠ 2 Rd

and a confidence level ↵ 2 [0, 1], the value-at-risk for a
given point x is:

VAR↵

⇥
f(x ⇧ ⇠)

⇤
= sup{z 2 R : P

⇥
f(x ⇧ ⇠) � z

⇤
� ↵}.

VAR↵

⇥
s[f(x⇧⇠),w]

⇤
= sup{z 2 R : P

⇥
s[f(x⇧⇠),w] � z

⇤
� ↵}.

Although several BO methods exist for optimizing VAR
(Cakmak et al., 2020; Nguyen et al., 2021b), they cannot di-
rectly be used in the MO setting because VAR is not defined
for multivariate random variables. A näive way to extend
VAR to the MO setting would be to consider the VAR of
each objective independently. However, this ignores the fact
that all M objectives are evaluated at the same realization of
x⇧⇠. Considering the VAR of each objective independently
typically leads to overly optimistic risk estimates because
objectives under input noise are not typically simultaneously

greater than or equal to their respective independent VARs
(i.e. the (1 � ↵) - quantiles) with probability � ↵. Thus
it is important to use risk measures such as multivariate
value-at-risk (MVAR) that account for the joint distribution
of the objectives (Prèkopa, 2012).

This is illustrated in the center plot in Figure 1. Under input
noise, the objective values are correlated, which underscores
the importance of accounting for the joint distribution of
the objectives in measures of robustness. In addition, the

3For brevity, we omit the dependency on x in our notation and
write ⇠ and P (⇠) going forward.

VaR of Scalarization

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Robust Multi-Objective Bayesian Optimization Under Input Noise

by the objectives alone, including robustness to input noise.
However, simply having a diverse set of candidates does not
necessarily imply robustness, and CAS alone cannot pro-
duce any guarantees on robustness to input noise. Methods
such as CAS would require a post-hoc analysis using the
data collected during optimization to analyze the sensitivity
of the solutions to input noise (Calandra and Peters, 2014).

Approaching robust design by decoupling data collection
and sensitivity analysis is central to the Taguchi method
(Taguchi, 1989). Data acquisition often revolves around
finding designs that balance the mean and variance of the
sensitive objective under input noise (Beyer and Sendhoff,
2007). Do et al. (2021) propose an approach in this vein for
the two-objective setting where only one objective is subject
to input noise. However, the authors do not aim to learn
trade-offs with high probability robustness guarantees, and
the method does not handle multiple sensitive objectives. In
contrast with the Taguchi method, we aim to unify data col-
lection and sensitivity analysis by selecting designs that are
believed to yield high-probability performance guarantees.

Outside the BO literature, robust MO optimization has been
studied using either EAs (Gupta and Deb, 2005; He et al.,
2019) or assuming access to the explicit mathematical pro-
gramming formulation of the problem (Majewski et al.,
2017; Roberts et al., 2018). Those works have focused on
finding the Pareto frontier of the expectation or the worst-
case objectives or on finding the Pareto frontier of the nomi-
nal objectives with additional constraints on the deviation
from the nominal values (Deb and Gupta, 2005; Avigad and
Branke, 2008). Some works have considered conceptual
properties of different scalarization methods (Ide and Köbis,
2014), but not in relation to MVAR. EAs that are robust to
input noise are not applicable to the small evaluation bud-
get regime that we consider because they typically require
a large number of function evaluations (Deb and Gupta,
2005). Even methods that combine EAs with GPs require
thousands of evaluations per design (Zhou et al., 2018).

As a final differentiator from prior work, we consider the
practical setting where there are additional black-box con-
straints that are sensitive to input noise (Marzat et al., 2013;
Li and Li, 2015), which is a subject addressed by only a
few BO methods (Beland and Nair, 2017) even in the single
objective case.

4. Multi-Objective Optimization with Noisy
Inputs

In many practical scenarios, the nominal performance of
a design can be evaluated by means of a simulation (e.g.,
by simulating the pharmaceutical process under nominal
operating conditions). We consider the setting where we
can simulate f(x) for any given design x 2 X , but that
the design is subject to noise ⇠(x) from a known noise

process ⇠(x) ⇠ P (⇠;x) at implementation time.3 The
realized system performance is given by the random variable
f(x ⇧ ⇠), where x ⇧ ⇠ denotes any known function g(x, ⇠)
(e.g. for additive noise ⇧ is simply +). For an extended
problem formulation including black-box constraints, see
Appendix A.4.

In robust optimization, the goal is often to optimize a risk

measure ⇢[f(x ⇧ ⇠)] that maps a random variable to a statis-
tic of its distribution. A common risk measure is the ex-
pectation over the input noise distribution (Deb and Gupta,
2005; Toscano-Palmerin and Frazier, 2018; Fröhlich et al.,
2020), E⇠⇠P (⇠)[f(x ⇧ ⇠)], which can be used instead of
the random variable f(x ⇧ ⇠) and optimized via standard
multi-objective optimization methods. We propose the first
MOBO methods for optimizing expectation objectives in
Appendix F. Despite its widespread use, the expectation
risk measure may not always align with the practitioner’s
true robustness goals. Often, one would prefer solutions
with objectives that are better than some performance spec-
ification z 2 RM with high probability (e.g. to maximize
production yield) (Sarykalin et al., 2008). Hence, in the
single-objective setting, probabilistic risk measures such as
value-at-risk (VAR) are frequently used.
Definition 4.1. Given input noise ⇠ ⇠ P (⇠) where ⇠ 2 Rd

and a confidence level ↵ 2 [0, 1], the value-at-risk for a
given point x is:

VAR↵

⇥
f(x ⇧ ⇠)

⇤
= sup{z 2 R : P

⇥
f(x ⇧ ⇠) � z

⇤
� ↵}.

VAR↵

⇥
s[f(x⇧⇠),w]

⇤
= sup{z 2 R : P

⇥
s[f(x⇧⇠),w] � z

⇤
� ↵}.

Although several BO methods exist for optimizing VAR
(Cakmak et al., 2020; Nguyen et al., 2021b), they cannot di-
rectly be used in the MO setting because VAR is not defined
for multivariate random variables. A näive way to extend
VAR to the MO setting would be to consider the VAR of
each objective independently. However, this ignores the fact
that all M objectives are evaluated at the same realization of
x⇧⇠. Considering the VAR of each objective independently
typically leads to overly optimistic risk estimates because
objectives under input noise are not typically simultaneously

greater than or equal to their respective independent VARs
(i.e. the (1 � ↵) - quantiles) with probability � ↵. Thus
it is important to use risk measures such as multivariate
value-at-risk (MVAR) that account for the joint distribution
of the objectives (Prèkopa, 2012).

This is illustrated in the center plot in Figure 1. Under input
noise, the objective values are correlated, which underscores
the importance of accounting for the joint distribution of
the objectives in measures of robustness. In addition, the

3For brevity, we omit the dependency on x in our notation and
write ⇠ and P (⇠) going forward.
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by the objectives alone, including robustness to input noise.
However, simply having a diverse set of candidates does not
necessarily imply robustness, and CAS alone cannot pro-
duce any guarantees on robustness to input noise. Methods
such as CAS would require a post-hoc analysis using the
data collected during optimization to analyze the sensitivity
of the solutions to input noise (Calandra and Peters, 2014).

Approaching robust design by decoupling data collection
and sensitivity analysis is central to the Taguchi method
(Taguchi, 1989). Data acquisition often revolves around
finding designs that balance the mean and variance of the
sensitive objective under input noise (Beyer and Sendhoff,
2007). Do et al. (2021) propose an approach in this vein for
the two-objective setting where only one objective is subject
to input noise. However, the authors do not aim to learn
trade-offs with high probability robustness guarantees, and
the method does not handle multiple sensitive objectives. In
contrast with the Taguchi method, we aim to unify data col-
lection and sensitivity analysis by selecting designs that are
believed to yield high-probability performance guarantees.

Outside the BO literature, robust MO optimization has been
studied using either EAs (Gupta and Deb, 2005; He et al.,
2019) or assuming access to the explicit mathematical pro-
gramming formulation of the problem (Majewski et al.,
2017; Roberts et al., 2018). Those works have focused on
finding the Pareto frontier of the expectation or the worst-
case objectives or on finding the Pareto frontier of the nomi-
nal objectives with additional constraints on the deviation
from the nominal values (Deb and Gupta, 2005; Avigad and
Branke, 2008). Some works have considered conceptual
properties of different scalarization methods (Ide and Köbis,
2014), but not in relation to MVAR. EAs that are robust to
input noise are not applicable to the small evaluation bud-
get regime that we consider because they typically require
a large number of function evaluations (Deb and Gupta,
2005). Even methods that combine EAs with GPs require
thousands of evaluations per design (Zhou et al., 2018).

As a final differentiator from prior work, we consider the
practical setting where there are additional black-box con-
straints that are sensitive to input noise (Marzat et al., 2013;
Li and Li, 2015), which is a subject addressed by only a
few BO methods (Beland and Nair, 2017) even in the single
objective case.

4. Multi-Objective Optimization with Noisy
Inputs

In many practical scenarios, the nominal performance of
a design can be evaluated by means of a simulation (e.g.,
by simulating the pharmaceutical process under nominal
operating conditions). We consider the setting where we
can simulate f(x) for any given design x 2 X , but that
the design is subject to noise ⇠(x) from a known noise

process ⇠(x) ⇠ P (⇠;x) at implementation time.3 The
realized system performance is given by the random variable
f(x ⇧ ⇠), where x ⇧ ⇠ denotes any known function g(x, ⇠)
(e.g. for additive noise ⇧ is simply +). For an extended
problem formulation including black-box constraints, see
Appendix A.4.

In robust optimization, the goal is often to optimize a risk

measure ⇢[f(x ⇧ ⇠)] that maps a random variable to a statis-
tic of its distribution. A common risk measure is the ex-
pectation over the input noise distribution (Deb and Gupta,
2005; Toscano-Palmerin and Frazier, 2018; Fröhlich et al.,
2020), E⇠⇠P (⇠)[f(x ⇧ ⇠)], which can be used instead of
the random variable f(x ⇧ ⇠) and optimized via standard
multi-objective optimization methods. We propose the first
MOBO methods for optimizing expectation objectives in
Appendix F. Despite its widespread use, the expectation
risk measure may not always align with the practitioner’s
true robustness goals. Often, one would prefer solutions
with objectives that are better than some performance spec-
ification z 2 RM with high probability (e.g. to maximize
production yield) (Sarykalin et al., 2008). Hence, in the
single-objective setting, probabilistic risk measures such as
value-at-risk (VAR) are frequently used.
Definition 4.1. Given input noise ⇠ ⇠ P (⇠) where ⇠ 2 Rd

and a confidence level ↵ 2 [0, 1], the value-at-risk for a
given point x is:

VAR↵

⇥
f(x ⇧ ⇠)

⇤
= sup{z 2 R : P

⇥
f(x ⇧ ⇠) � z

⇤
� ↵}.

VAR↵

⇥
s[f(x⇧⇠),w]

⇤
= sup{z 2 R : P

⇥
s[f(x⇧⇠),w] � z

⇤
� ↵}.

Although several BO methods exist for optimizing VAR
(Cakmak et al., 2020; Nguyen et al., 2021b), they cannot di-
rectly be used in the MO setting because VAR is not defined
for multivariate random variables. A näive way to extend
VAR to the MO setting would be to consider the VAR of
each objective independently. However, this ignores the fact
that all M objectives are evaluated at the same realization of
x⇧⇠. Considering the VAR of each objective independently
typically leads to overly optimistic risk estimates because
objectives under input noise are not typically simultaneously

greater than or equal to their respective independent VARs
(i.e. the (1 � ↵) - quantiles) with probability � ↵. Thus
it is important to use risk measures such as multivariate
value-at-risk (MVAR) that account for the joint distribution
of the objectives (Prèkopa, 2012).

This is illustrated in the center plot in Figure 1. Under input
noise, the objective values are correlated, which underscores
the importance of accounting for the joint distribution of
the objectives in measures of robustness. In addition, the

3For brevity, we omit the dependency on x in our notation and
write ⇠ and P (⇠) going forward.
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by the objectives alone, including robustness to input noise.
However, simply having a diverse set of candidates does not
necessarily imply robustness, and CAS alone cannot pro-
duce any guarantees on robustness to input noise. Methods
such as CAS would require a post-hoc analysis using the
data collected during optimization to analyze the sensitivity
of the solutions to input noise (Calandra and Peters, 2014).

Approaching robust design by decoupling data collection
and sensitivity analysis is central to the Taguchi method
(Taguchi, 1989). Data acquisition often revolves around
finding designs that balance the mean and variance of the
sensitive objective under input noise (Beyer and Sendhoff,
2007). Do et al. (2021) propose an approach in this vein for
the two-objective setting where only one objective is subject
to input noise. However, the authors do not aim to learn
trade-offs with high probability robustness guarantees, and
the method does not handle multiple sensitive objectives. In
contrast with the Taguchi method, we aim to unify data col-
lection and sensitivity analysis by selecting designs that are
believed to yield high-probability performance guarantees.

Outside the BO literature, robust MO optimization has been
studied using either EAs (Gupta and Deb, 2005; He et al.,
2019) or assuming access to the explicit mathematical pro-
gramming formulation of the problem (Majewski et al.,
2017; Roberts et al., 2018). Those works have focused on
finding the Pareto frontier of the expectation or the worst-
case objectives or on finding the Pareto frontier of the nomi-
nal objectives with additional constraints on the deviation
from the nominal values (Deb and Gupta, 2005; Avigad and
Branke, 2008). Some works have considered conceptual
properties of different scalarization methods (Ide and Köbis,
2014), but not in relation to MVAR. EAs that are robust to
input noise are not applicable to the small evaluation bud-
get regime that we consider because they typically require
a large number of function evaluations (Deb and Gupta,
2005). Even methods that combine EAs with GPs require
thousands of evaluations per design (Zhou et al., 2018).

As a final differentiator from prior work, we consider the
practical setting where there are additional black-box con-
straints that are sensitive to input noise (Marzat et al., 2013;
Li and Li, 2015), which is a subject addressed by only a
few BO methods (Beland and Nair, 2017) even in the single
objective case.

4. Multi-Objective Optimization with Noisy
Inputs

In many practical scenarios, the nominal performance of
a design can be evaluated by means of a simulation (e.g.,
by simulating the pharmaceutical process under nominal
operating conditions). We consider the setting where we
can simulate f(x) for any given design x 2 X , but that
the design is subject to noise ⇠(x) from a known noise

process ⇠(x) ⇠ P (⇠;x) at implementation time.3 The
realized system performance is given by the random variable
f(x ⇧ ⇠), where x ⇧ ⇠ denotes any known function g(x, ⇠)
(e.g. for additive noise ⇧ is simply +). For an extended
problem formulation including black-box constraints, see
Appendix A.4.

In robust optimization, the goal is often to optimize a risk

measure ⇢[f(x ⇧ ⇠)] that maps a random variable to a statis-
tic of its distribution. A common risk measure is the ex-
pectation over the input noise distribution (Deb and Gupta,
2005; Toscano-Palmerin and Frazier, 2018; Fröhlich et al.,
2020), E⇠⇠P (⇠)[f(x ⇧ ⇠)], which can be used instead of
the random variable f(x ⇧ ⇠) and optimized via standard
multi-objective optimization methods. We propose the first
MOBO methods for optimizing expectation objectives in
Appendix F. Despite its widespread use, the expectation
risk measure may not always align with the practitioner’s
true robustness goals. Often, one would prefer solutions
with objectives that are better than some performance spec-
ification z 2 RM with high probability (e.g. to maximize
production yield) (Sarykalin et al., 2008). Hence, in the
single-objective setting, probabilistic risk measures such as
value-at-risk (VAR) are frequently used.
Definition 4.1. Given input noise ⇠ ⇠ P (⇠) where ⇠ 2 Rd

and a confidence level ↵ 2 [0, 1], the value-at-risk for a
given point x is:

VAR↵

⇥
f(x ⇧ ⇠)

⇤
= sup{z 2 R : P

⇥
f(x ⇧ ⇠) � z

⇤
� ↵}.

VAR↵

⇥
s[f(x⇧⇠),w]

⇤
= sup{z 2 R : P

⇥
s[f(x⇧⇠),w] � z

⇤
� ↵}.

Although several BO methods exist for optimizing VAR
(Cakmak et al., 2020; Nguyen et al., 2021b), they cannot di-
rectly be used in the MO setting because VAR is not defined
for multivariate random variables. A näive way to extend
VAR to the MO setting would be to consider the VAR of
each objective independently. However, this ignores the fact
that all M objectives are evaluated at the same realization of
x⇧⇠. Considering the VAR of each objective independently
typically leads to overly optimistic risk estimates because
objectives under input noise are not typically simultaneously

greater than or equal to their respective independent VARs
(i.e. the (1 � ↵) - quantiles) with probability � ↵. Thus
it is important to use risk measures such as multivariate
value-at-risk (MVAR) that account for the joint distribution
of the objectives (Prèkopa, 2012).

This is illustrated in the center plot in Figure 1. Under input
noise, the objective values are correlated, which underscores
the importance of accounting for the joint distribution of
the objectives in measures of robustness. In addition, the

3For brevity, we omit the dependency on x in our notation and
write ⇠ and P (⇠) going forward.
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objective independently or using the expectation risk mea-
sure may conceal underlying variation and risk. Indeed, the
results in Appendix I show that optimizing an expectation
risk measure on this problem results in poor performance.

In contrast with VAR and the expectation risk measure
which map a random variable to single scalar or vector,
MVAR maps a random variable to a non-dominated set

of vectors in the outcome space that are dominated by ↵-
fraction of all possible realizations, where ↵ 2 [0, 1] is a
hyperparameter set by the practitioner. That is, each vector
in the MVAR set corresponds to an objective specification
that a design will meet with probability � ↵. Therefore, ↵
is an interpretable risk level that can be valuable in manu-
facturing applications where one wishes to find the PF of all
objective specifications with a guaranteed yield fraction (↵).

Definition 4.2. The MVAR of f for a given point x and
confidence level ↵ 2 [0, 1] is:

MVAR↵

⇥
f(x ⇧ ⇠)

⇤
=

PARETO
��

z 2 RM : P
⇥
f(x ⇧ ⇠) � z

⇤
� ↵

 �
.

The MVAR set over X specifies objective vectors z such
that there exists a known design x 2 X with corresponding
random objectives f(x ⇧ ⇠) under P (⇠) that dominate z
with probability � ↵.
Definition 4.3. The MVAR for a set of points X is:

MVAR↵

⇥
{f(x ⇧ ⇠)}x2X

⇤
=

PARETO

✓ [

x2X

MVAR↵

⇥
f(x ⇧ ⇠)

⇤◆
.

The global MVAR across the design space, MVAR↵

⇥
{f(x⇧

⇠)}x2X
⇤
, is a robust analogue of the PF in the standard MO

setting. The concept of the MVAR of a set of design points
X is a novel contribution of this work.

Optimization Goal In this work, our goal is to identify
the MVAR set across the design space: MVAR↵

⇥
{f(x ⇧

⇠)}x2X
⇤
. Given an approximate MVAR set across the de-

sign space, a decision-maker can pick a design according to
their preferences. Similar to the standard MO setting, the
HV of the MVAR set across the design space can be used
to evaluate optimization performance.

5. Optimizing MVAR
A natural approach for optimizing MVAR is to directly
maximize the HV dominated by the MVAR set. Although
MVAR of a given point typically cannot be evaluated di-
rectly, it can be approximated using n⇠ MC samples of
⇠, provided that independent samples can be draw from
the noise process. Thus, evaluating the MVAR set across
the previously evaluated designs using the surrogate re-
quires sampling from the posterior of P (f |D) evaluated

jointly at x1 ⇧ ⇠i, . . . ,xn ⇧ ⇠i for i = 1, ..., n⇠, where
X1:n := {x1, ...,xn} are the previously evaluated designs.
Since {f(x0

⇧ ⇠)}x02X1:n is typically not observed, the
corresponding posterior predictions may have large uncer-
tainties. In order to get a reliable estimate of MVAR, we
would need to integrate over the posterior distribution of
{f(x0

⇧ ⇠)}x02X1:n . qNEHVI (Daulton et al., 2021a) is
a variant of EHVI that integrates over the uncertainty in
function values at previously evaluated designs. This makes
qNEHVI suitable for optimizing MVAR.

However, several computational issues—including time
complexity that is exponential in the number of objectives
and exponential in the size of MVAR↵

⇥
f(x ⇧ ⇠)

⇤
—make

it infeasible to directly optimize MVAR with qNEHVI in
many settings. We defer a detailed discussion to Appendix D
and present an empirical evaluation in Appendix I.

5.1. Relationship between MVAR and Scalarizations

An alternative to direct optimization of the MVAR set is to
apply a scalarization to the objectives and use a standard
risk measure on the scalarized objective. Unlike the use of
independent risk measures on each objective, this approach
accounts for the correlation between outcomes induced by
the input perturbation. In this section, we present our main
theoretical result: under limited assumptions, there exists a
bijection, based on VAR, that maps a particular family of
scalarizations—Chebyshev scalarizations (Kaisa, 1999)—to
points in the MVAR set. In other words, each point in the
MVAR set corresponds to a particular set of scalarization
weights. This means that we can recover the entire MVAR
set using these scalarizations, without any loss. Proofs and
additional theoretical results including extensions to the
constrained setting are provided in Appendix A.

Definition 5.1. Let w 2 �M�1
+ , where �M�1

+ denotes
the positive (M � 1)-simplex, and let r 2 RM . The
Chebyshev scalarization s[y,w, r] is given by s[y,w, r] =
mini wi(yi � ri), where ·i denotes the i

th dimension.4

The contour in the left plot in Figure 2 shows the Cheby-
shev scalarization for a fixed w for the two-objective toy
problem from Figure 1 and illustrates a connection between
Pareto dominance and the Chebyshev scalarization, which
we formalize below. The black points are function values
under sampled perturbations for a single design x. The
center plot in Figure 2 shows the distribution of Chebyshev
scalarization values for a given w and the black line indi-
cates the ↵-level VAR. The right plot in Figure 2 illustrates
that using the VAR of a Chebyshev scalarization, we can
deduce a point z such that the function values under the

4Typically, f is scaled to the unit cube using the r as the lower
bound before applying the scalarization. Since the scaled reference
point is 0, hence forth, we omit r for brevity. See Appendix G.1
for details.
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by the objectives alone, including robustness to input noise.
However, simply having a diverse set of candidates does not
necessarily imply robustness, and CAS alone cannot pro-
duce any guarantees on robustness to input noise. Methods
such as CAS would require a post-hoc analysis using the
data collected during optimization to analyze the sensitivity
of the solutions to input noise (Calandra and Peters, 2014).

Approaching robust design by decoupling data collection
and sensitivity analysis is central to the Taguchi method
(Taguchi, 1989). Data acquisition often revolves around
finding designs that balance the mean and variance of the
sensitive objective under input noise (Beyer and Sendhoff,
2007). Do et al. (2021) propose an approach in this vein for
the two-objective setting where only one objective is subject
to input noise. However, the authors do not aim to learn
trade-offs with high probability robustness guarantees, and
the method does not handle multiple sensitive objectives. In
contrast with the Taguchi method, we aim to unify data col-
lection and sensitivity analysis by selecting designs that are
believed to yield high-probability performance guarantees.

Outside the BO literature, robust MO optimization has been
studied using either EAs (Gupta and Deb, 2005; He et al.,
2019) or assuming access to the explicit mathematical pro-
gramming formulation of the problem (Majewski et al.,
2017; Roberts et al., 2018). Those works have focused on
finding the Pareto frontier of the expectation or the worst-
case objectives or on finding the Pareto frontier of the nomi-
nal objectives with additional constraints on the deviation
from the nominal values (Deb and Gupta, 2005; Avigad and
Branke, 2008). Some works have considered conceptual
properties of different scalarization methods (Ide and Köbis,
2014), but not in relation to MVAR. EAs that are robust to
input noise are not applicable to the small evaluation bud-
get regime that we consider because they typically require
a large number of function evaluations (Deb and Gupta,
2005). Even methods that combine EAs with GPs require
thousands of evaluations per design (Zhou et al., 2018).

As a final differentiator from prior work, we consider the
practical setting where there are additional black-box con-
straints that are sensitive to input noise (Marzat et al., 2013;
Li and Li, 2015), which is a subject addressed by only a
few BO methods (Beland and Nair, 2017) even in the single
objective case.

4. Multi-Objective Optimization with Noisy
Inputs

In many practical scenarios, the nominal performance of
a design can be evaluated by means of a simulation (e.g.,
by simulating the pharmaceutical process under nominal
operating conditions). We consider the setting where we
can simulate f(x) for any given design x 2 X , but that
the design is subject to noise ⇠(x) from a known noise

process ⇠(x) ⇠ P (⇠;x) at implementation time.3 The
realized system performance is given by the random variable
f(x ⇧ ⇠), where x ⇧ ⇠ denotes any known function g(x, ⇠)
(e.g. for additive noise ⇧ is simply +). For an extended
problem formulation including black-box constraints, see
Appendix A.4.

In robust optimization, the goal is often to optimize a risk

measure ⇢[f(x ⇧ ⇠)] that maps a random variable to a statis-
tic of its distribution. A common risk measure is the ex-
pectation over the input noise distribution (Deb and Gupta,
2005; Toscano-Palmerin and Frazier, 2018; Fröhlich et al.,
2020), E⇠⇠P (⇠)[f(x ⇧ ⇠)], which can be used instead of
the random variable f(x ⇧ ⇠) and optimized via standard
multi-objective optimization methods. We propose the first
MOBO methods for optimizing expectation objectives in
Appendix F. Despite its widespread use, the expectation
risk measure may not always align with the practitioner’s
true robustness goals. Often, one would prefer solutions
with objectives that are better than some performance spec-
ification z 2 RM with high probability (e.g. to maximize
production yield) (Sarykalin et al., 2008). Hence, in the
single-objective setting, probabilistic risk measures such as
value-at-risk (VAR) are frequently used.
Definition 4.1. Given input noise ⇠ ⇠ P (⇠) where ⇠ 2 Rd

and a confidence level ↵ 2 [0, 1], the value-at-risk for a
given point x is:

VAR↵

⇥
f(x ⇧ ⇠)

⇤
= sup{z 2 R : P

⇥
f(x ⇧ ⇠) � z

⇤
� ↵}.

VAR↵

⇥
s[f(x⇧⇠),w]

⇤
= sup{z 2 R : P

⇥
s[f(x⇧⇠),w] � z

⇤
� ↵}.

Although several BO methods exist for optimizing VAR
(Cakmak et al., 2020; Nguyen et al., 2021b), they cannot di-
rectly be used in the MO setting because VAR is not defined
for multivariate random variables. A näive way to extend
VAR to the MO setting would be to consider the VAR of
each objective independently. However, this ignores the fact
that all M objectives are evaluated at the same realization of
x⇧⇠. Considering the VAR of each objective independently
typically leads to overly optimistic risk estimates because
objectives under input noise are not typically simultaneously

greater than or equal to their respective independent VARs
(i.e. the (1 � ↵) - quantiles) with probability � ↵. Thus
it is important to use risk measures such as multivariate
value-at-risk (MVAR) that account for the joint distribution
of the objectives (Prèkopa, 2012).

This is illustrated in the center plot in Figure 1. Under input
noise, the objective values are correlated, which underscores
the importance of accounting for the joint distribution of
the objectives in measures of robustness. In addition, the

3For brevity, we omit the dependency on x in our notation and
write ⇠ and P (⇠) going forward.
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objective independently or using the expectation risk mea-
sure may conceal underlying variation and risk. Indeed, the
results in Appendix I show that optimizing an expectation
risk measure on this problem results in poor performance.

In contrast with VAR and the expectation risk measure
which map a random variable to single scalar or vector,
MVAR maps a random variable to a non-dominated set

of vectors in the outcome space that are dominated by ↵-
fraction of all possible realizations, where ↵ 2 [0, 1] is a
hyperparameter set by the practitioner. That is, each vector
in the MVAR set corresponds to an objective specification
that a design will meet with probability � ↵. Therefore, ↵
is an interpretable risk level that can be valuable in manu-
facturing applications where one wishes to find the PF of all
objective specifications with a guaranteed yield fraction (↵).

Definition 4.2. The MVAR of f for a given point x and
confidence level ↵ 2 [0, 1] is:

MVAR↵

⇥
f(x ⇧ ⇠)

⇤
=

PARETO
��

z 2 RM : P
⇥
f(x ⇧ ⇠) � z

⇤
� ↵

 �
.

The MVAR set over X specifies objective vectors z such
that there exists a known design x 2 X with corresponding
random objectives f(x ⇧ ⇠) under P (⇠) that dominate z
with probability � ↵.
Definition 4.3. The MVAR for a set of points X is:

MVAR↵

⇥
{f(x ⇧ ⇠)}x2X

⇤
=

PARETO

✓ [

x2X

MVAR↵

⇥
f(x ⇧ ⇠)

⇤◆
.

The global MVAR across the design space, MVAR↵

⇥
{f(x⇧

⇠)}x2X
⇤
, is a robust analogue of the PF in the standard MO

setting. The concept of the MVAR of a set of design points
X is a novel contribution of this work.

Optimization Goal In this work, our goal is to identify
the MVAR set across the design space: MVAR↵

⇥
{f(x ⇧

⇠)}x2X
⇤
. Given an approximate MVAR set across the de-

sign space, a decision-maker can pick a design according to
their preferences. Similar to the standard MO setting, the
HV of the MVAR set across the design space can be used
to evaluate optimization performance.

5. Optimizing MVAR
A natural approach for optimizing MVAR is to directly
maximize the HV dominated by the MVAR set. Although
MVAR of a given point typically cannot be evaluated di-
rectly, it can be approximated using n⇠ MC samples of
⇠, provided that independent samples can be draw from
the noise process. Thus, evaluating the MVAR set across
the previously evaluated designs using the surrogate re-
quires sampling from the posterior of P (f |D) evaluated

jointly at x1 ⇧ ⇠i, . . . ,xn ⇧ ⇠i for i = 1, ..., n⇠, where
X1:n := {x1, ...,xn} are the previously evaluated designs.
Since {f(x0

⇧ ⇠)}x02X1:n is typically not observed, the
corresponding posterior predictions may have large uncer-
tainties. In order to get a reliable estimate of MVAR, we
would need to integrate over the posterior distribution of
{f(x0

⇧ ⇠)}x02X1:n . qNEHVI (Daulton et al., 2021a) is
a variant of EHVI that integrates over the uncertainty in
function values at previously evaluated designs. This makes
qNEHVI suitable for optimizing MVAR.

However, several computational issues—including time
complexity that is exponential in the number of objectives
and exponential in the size of MVAR↵

⇥
f(x ⇧ ⇠)

⇤
—make

it infeasible to directly optimize MVAR with qNEHVI in
many settings. We defer a detailed discussion to Appendix D
and present an empirical evaluation in Appendix I.

5.1. Relationship between MVAR and Scalarizations

An alternative to direct optimization of the MVAR set is to
apply a scalarization to the objectives and use a standard
risk measure on the scalarized objective. Unlike the use of
independent risk measures on each objective, this approach
accounts for the correlation between outcomes induced by
the input perturbation. In this section, we present our main
theoretical result: under limited assumptions, there exists a
bijection, based on VAR, that maps a particular family of
scalarizations—Chebyshev scalarizations (Kaisa, 1999)—to
points in the MVAR set. In other words, each point in the
MVAR set corresponds to a particular set of scalarization
weights. This means that we can recover the entire MVAR
set using these scalarizations, without any loss. Proofs and
additional theoretical results including extensions to the
constrained setting are provided in Appendix A.

Definition 5.1. Let w 2 �M�1
+ , where �M�1

+ denotes
the positive (M � 1)-simplex, and let r 2 RM . The
Chebyshev scalarization s[y,w, r] is given by s[y,w, r] =
mini wi(yi � ri), where ·i denotes the i

th dimension.4

The contour in the left plot in Figure 2 shows the Cheby-
shev scalarization for a fixed w for the two-objective toy
problem from Figure 1 and illustrates a connection between
Pareto dominance and the Chebyshev scalarization, which
we formalize below. The black points are function values
under sampled perturbations for a single design x. The
center plot in Figure 2 shows the distribution of Chebyshev
scalarization values for a given w and the black line indi-
cates the ↵-level VAR. The right plot in Figure 2 illustrates
that using the VAR of a Chebyshev scalarization, we can
deduce a point z such that the function values under the

4Typically, f is scaled to the unit cube using the r as the lower
bound before applying the scalarization. Since the scaled reference
point is 0, hence forth, we omit r for brevity. See Appendix G.1
for details.
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by the objectives alone, including robustness to input noise.
However, simply having a diverse set of candidates does not
necessarily imply robustness, and CAS alone cannot pro-
duce any guarantees on robustness to input noise. Methods
such as CAS would require a post-hoc analysis using the
data collected during optimization to analyze the sensitivity
of the solutions to input noise (Calandra and Peters, 2014).

Approaching robust design by decoupling data collection
and sensitivity analysis is central to the Taguchi method
(Taguchi, 1989). Data acquisition often revolves around
finding designs that balance the mean and variance of the
sensitive objective under input noise (Beyer and Sendhoff,
2007). Do et al. (2021) propose an approach in this vein for
the two-objective setting where only one objective is subject
to input noise. However, the authors do not aim to learn
trade-offs with high probability robustness guarantees, and
the method does not handle multiple sensitive objectives. In
contrast with the Taguchi method, we aim to unify data col-
lection and sensitivity analysis by selecting designs that are
believed to yield high-probability performance guarantees.

Outside the BO literature, robust MO optimization has been
studied using either EAs (Gupta and Deb, 2005; He et al.,
2019) or assuming access to the explicit mathematical pro-
gramming formulation of the problem (Majewski et al.,
2017; Roberts et al., 2018). Those works have focused on
finding the Pareto frontier of the expectation or the worst-
case objectives or on finding the Pareto frontier of the nomi-
nal objectives with additional constraints on the deviation
from the nominal values (Deb and Gupta, 2005; Avigad and
Branke, 2008). Some works have considered conceptual
properties of different scalarization methods (Ide and Köbis,
2014), but not in relation to MVAR. EAs that are robust to
input noise are not applicable to the small evaluation bud-
get regime that we consider because they typically require
a large number of function evaluations (Deb and Gupta,
2005). Even methods that combine EAs with GPs require
thousands of evaluations per design (Zhou et al., 2018).

As a final differentiator from prior work, we consider the
practical setting where there are additional black-box con-
straints that are sensitive to input noise (Marzat et al., 2013;
Li and Li, 2015), which is a subject addressed by only a
few BO methods (Beland and Nair, 2017) even in the single
objective case.

4. Multi-Objective Optimization with Noisy
Inputs

In many practical scenarios, the nominal performance of
a design can be evaluated by means of a simulation (e.g.,
by simulating the pharmaceutical process under nominal
operating conditions). We consider the setting where we
can simulate f(x) for any given design x 2 X , but that
the design is subject to noise ⇠(x) from a known noise

process ⇠(x) ⇠ P (⇠;x) at implementation time.3 The
realized system performance is given by the random variable
f(x ⇧ ⇠), where x ⇧ ⇠ denotes any known function g(x, ⇠)
(e.g. for additive noise ⇧ is simply +). For an extended
problem formulation including black-box constraints, see
Appendix A.4.

In robust optimization, the goal is often to optimize a risk

measure ⇢[f(x ⇧ ⇠)] that maps a random variable to a statis-
tic of its distribution. A common risk measure is the ex-
pectation over the input noise distribution (Deb and Gupta,
2005; Toscano-Palmerin and Frazier, 2018; Fröhlich et al.,
2020), E⇠⇠P (⇠)[f(x ⇧ ⇠)], which can be used instead of
the random variable f(x ⇧ ⇠) and optimized via standard
multi-objective optimization methods. We propose the first
MOBO methods for optimizing expectation objectives in
Appendix F. Despite its widespread use, the expectation
risk measure may not always align with the practitioner’s
true robustness goals. Often, one would prefer solutions
with objectives that are better than some performance spec-
ification z 2 RM with high probability (e.g. to maximize
production yield) (Sarykalin et al., 2008). Hence, in the
single-objective setting, probabilistic risk measures such as
value-at-risk (VAR) are frequently used.
Definition 4.1. Given input noise ⇠ ⇠ P (⇠) where ⇠ 2 Rd

and a confidence level ↵ 2 [0, 1], the value-at-risk for a
given point x is:

VAR↵

⇥
f(x ⇧ ⇠)

⇤
= sup{z 2 R : P

⇥
f(x ⇧ ⇠) � z

⇤
� ↵}.

VAR↵

⇥
s[f(x⇧⇠),w]

⇤
= sup{z 2 R : P

⇥
s[f(x⇧⇠),w] � z

⇤
� ↵}.

Although several BO methods exist for optimizing VAR
(Cakmak et al., 2020; Nguyen et al., 2021b), they cannot di-
rectly be used in the MO setting because VAR is not defined
for multivariate random variables. A näive way to extend
VAR to the MO setting would be to consider the VAR of
each objective independently. However, this ignores the fact
that all M objectives are evaluated at the same realization of
x⇧⇠. Considering the VAR of each objective independently
typically leads to overly optimistic risk estimates because
objectives under input noise are not typically simultaneously

greater than or equal to their respective independent VARs
(i.e. the (1 � ↵) - quantiles) with probability � ↵. Thus
it is important to use risk measures such as multivariate
value-at-risk (MVAR) that account for the joint distribution
of the objectives (Prèkopa, 2012).

This is illustrated in the center plot in Figure 1. Under input
noise, the objective values are correlated, which underscores
the importance of accounting for the joint distribution of
the objectives in measures of robustness. In addition, the

3For brevity, we omit the dependency on x in our notation and
write ⇠ and P (⇠) going forward.
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Algorithm 1 MARS

1: Input: input noise distribution P (⇠), search space X ,
black-box objectives f : X ! RM , confidence level ↵

2: Initialize D0  ;, GP0  GP(0, k)
3: for n = 1 to N do
4: Sample w ⇠ �M�1

+

5: Set objective to be l(x) = VAR↵(s[f(x ⇧ ⇠),w])
6: xn  argmaxx2X acq(x, l)
7: Evaluate f(xn),Dn  Dn�1 [ {xn,f(xn)}
8: Update posterior GPn conditional on {xn,f(xn)}
9: end for
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Experiment: Penicillin Production
• Objectives: 

• Penicillin yield (maximize) 

• CO2 output (minimize)

• Time-to-ferment (minimize)

• 7 Parameters:
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Robust Multi-Objective Bayesian Optimization Under Input Noise

different settings of ↵ 2 {0.7, 0.8, 0.9}. In all experiments with 3 and 4 objective GMM, we use additive noise, where
P (⇠) = N (µ = 0,⌃ = 0.05IM ). Many additional noise processes are discussed and evaluated in Appendix I.5, using the
same 2 objective GMM problem from the main text and ↵ = 0.9.

f
(i)(x) = 2⇡

3X

j=1

var
(i)
j cons

(i)
j �(x;µ = pos

(i)
j ,⌃ = var

(i)
j I2)

pos
(i)
j =

8
>>>><

>>>>:

j = 1 j = 2 j = 3
[0.2, 0.2] [0.8, 0.2] [0.5, 0.7] if i = 1
[0.07, 0.2] [0.4, 0.8] [0.85, 0.1] if i = 2
[0.08, 0.21] [0.45, 0.75] [0.86, 0.1] if i = 3
[0.09, 0.19] [0.44, 0.72] [0.89, 0.13] if i = 4

var
(i)
j =

8
>>>><

>>>>:

j = 1 j = 2 j = 3
0.04 0.01 0.01 if i = 1
0.04 0.01 0.0025 if i = 2
0.04 0.01 0.0049 if i = 3
0.0225 0.0049 0.0081 if i = 4

cons
(i)
j =

8
>>>><

>>>>:

j = 1 j = 2 j = 3
0.5 0.7 0.7 if i = 1
0.5 0.7 0.7 if i = 2
0.5 0.7 0.9 if i = 3
0.5 0.7 0.9 if i = 4

Constrained Branin Currin We use the open source implementation available at https://github.com/pytorch/
botorch. See Daulton et al. (2020) for details.

Disc Brake We use the open source implementation available at https://github.com/ryojitanabe/
reproblems. See Tanabe and Ishibuchi (2020) for details.

Penicillin Manufacturing Problem We use the open-source implementation available at https://github.com/
HarryQL/TuRBO-Penicillin. See Liang and Lai (2021) for details. We adapt the problem by adding independent
zero-mean Gaussian input noise to each parameter. The standard deviation of the input noise distribution for each parameter
is listed in Table 1.

Table 1: Standard deviation for independent zero-mean Gaussian input noise for each parameter in the Penicillin Problem
(reported as a percentage of the range of each parameter).

Parameter Noise Level

Culture Volume 3%
Biomass Concentration 3%
Temperature 0.5%
Glucose Concentration 2%
Substrate Feed Rate 1%
Substrate Feed Concentration 1%
H+ Concentration 1%

G.3. Evaluation Details

The global MVAR set is unknown and is approximated by taking the union of the MVAR sets of all designs evaluated across
all methods and all replications. We take this approach because even using an evolutionary algorithm to optimize MVAR
is nontrivial, since MVAR maps a single design to a set of points and is relatively computationally intensive to evaluate.
To evaluate the performance of a given method, we use n⇠ = 512 (except for 4 objective GMM, where we use n⇠ = 256)
to compute a high-fidelity estimate of the MVAR set across the designs selected during optimization by the method. We



Paper and Open Source Code

Paper: https://arxiv.org/abs/2202.07549


Code: github.com/facebookresearch/robust_mobo
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