

Robust Multi-Objective Bayesian Optimization Under Input Noise

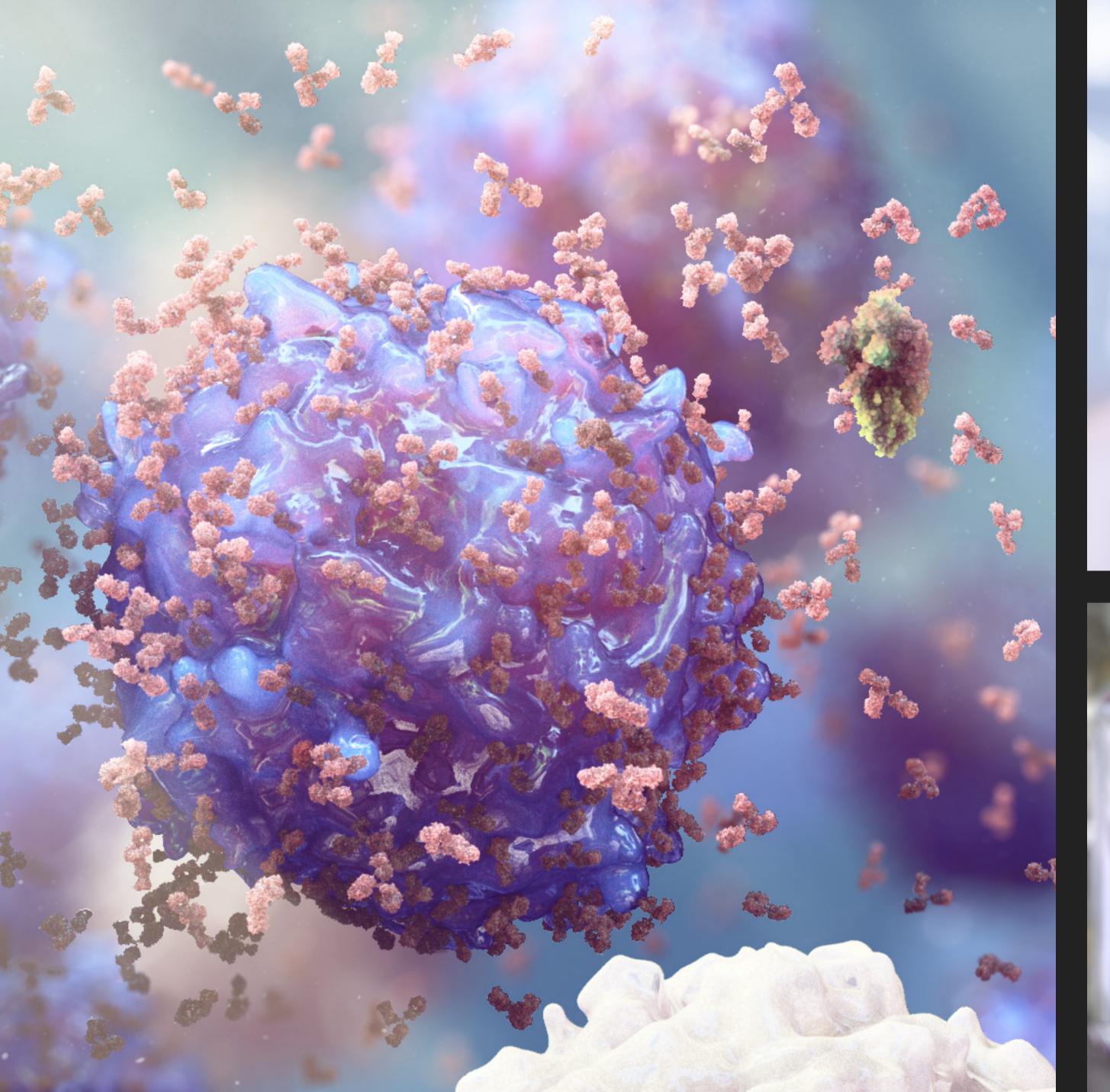
Sam Daulton*^{1,2}, Sait Cakmak*,^{1,3}, Max Balandat¹, Mike Osborne², Enlu Zhou³, Eytan Bakshy¹
ICML 2022

*Equal Contribution

¹ Meta

² University of Oxford

³ Georgia Institute of Technology



Goal: Tune experimental conditions (parameters)

- Goal: Tune experimental conditions (parameters)
 - Shelf temperature

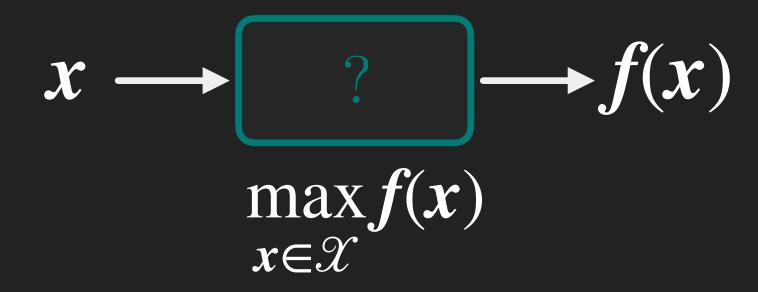
- Goal: Tune experimental conditions (parameters)
 - Shelf temperature
 - Chamber pressure

- Goal: Tune experimental conditions (parameters)
 - Shelf temperature
 - Chamber pressure
- Objectives:

- Goal: Tune experimental conditions (parameters)
 - Shelf temperature
 - Chamber pressure
- Objectives:
 - Efficiency of drying step (maximize)

- Goal: Tune experimental conditions (parameters)
 - Shelf temperature
 - Chamber pressure
- Objectives:
 - Efficiency of drying step (maximize)
 - Product quality (maximize)

Multi-Objective Bayesian Optimization

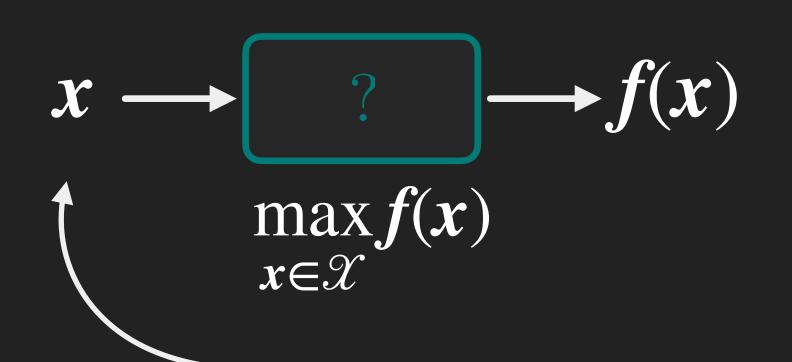


Goal: optimize a **vector-valued** black-box function that:

- Is expensive to evaluate (\$, time)
- Does not provide gradients

$$f(\mathbf{x}) = (f^{(1)}(\mathbf{x}), \dots, f^{(M)}(\mathbf{x})) \subset \mathbb{R}^M$$

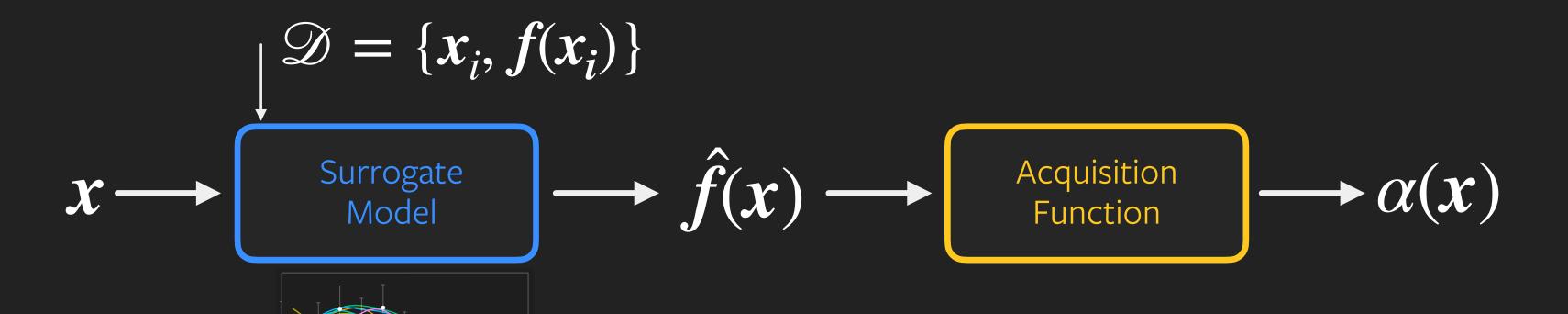
Multi-Objective Bayesian Optimization



Goal: optimize a **vector-valued** black-box function that:

- Is expensive to evaluate (\$, time)
- Does not provide gradients

$$f(\mathbf{x}) = (f^{(1)}(\mathbf{x}), \dots, f^{(M)}(\mathbf{x})) \subset \mathbb{R}^M$$



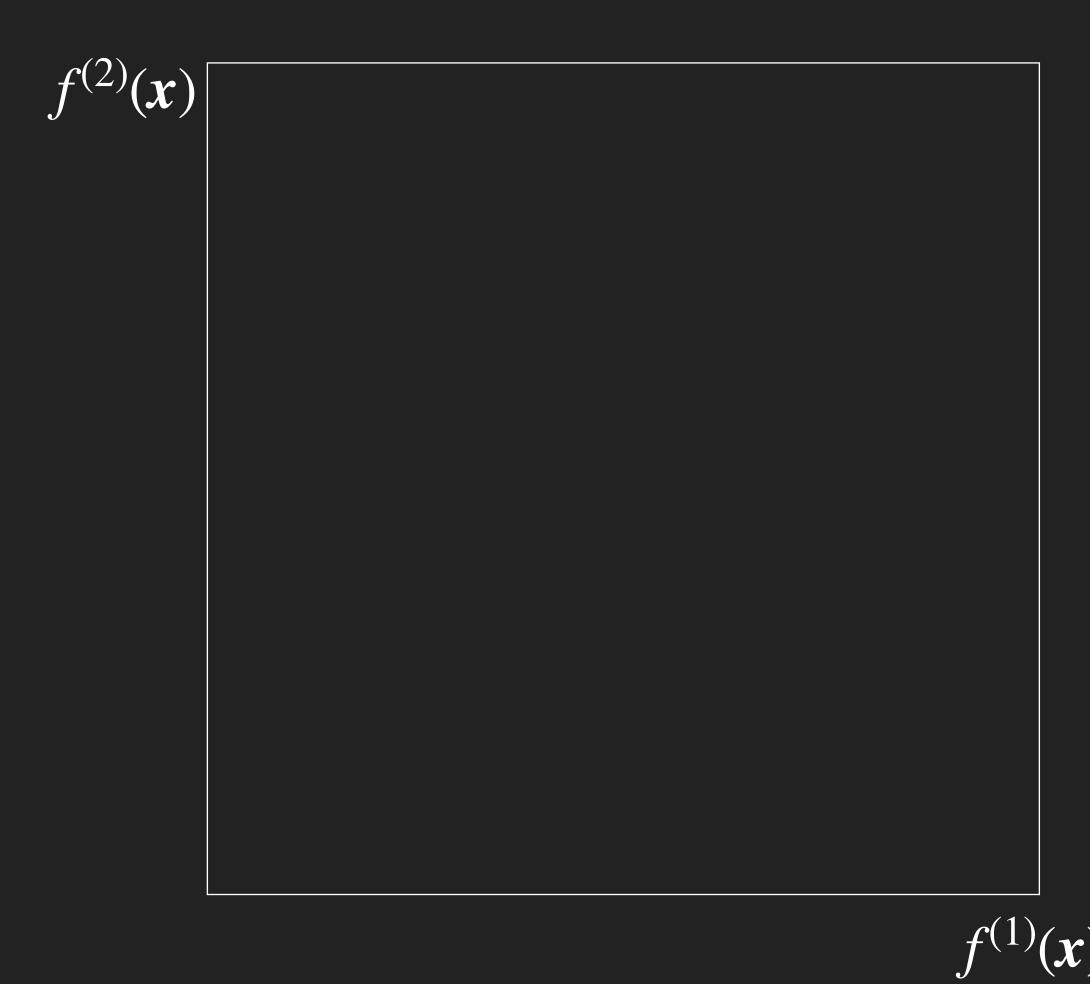
- Use a surrogate model that is fast to evaluate and provides gradients
- Use acquisition functions to perform explore/exploit

Numerical Optimization $\longrightarrow x^*$ $\max \alpha(x)$

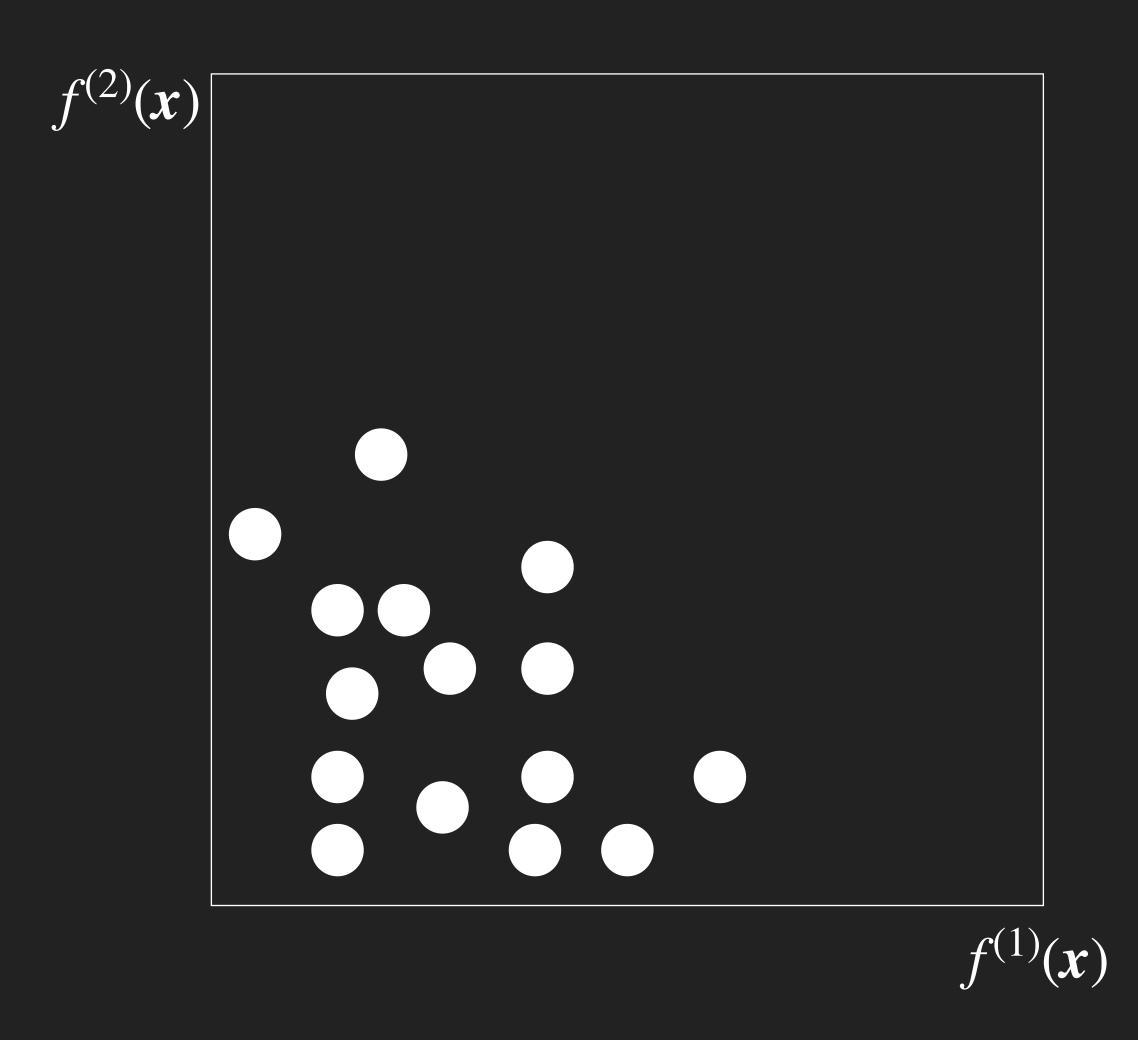
 $x \in \mathcal{X}$

 Generate candidate points to evaluate next

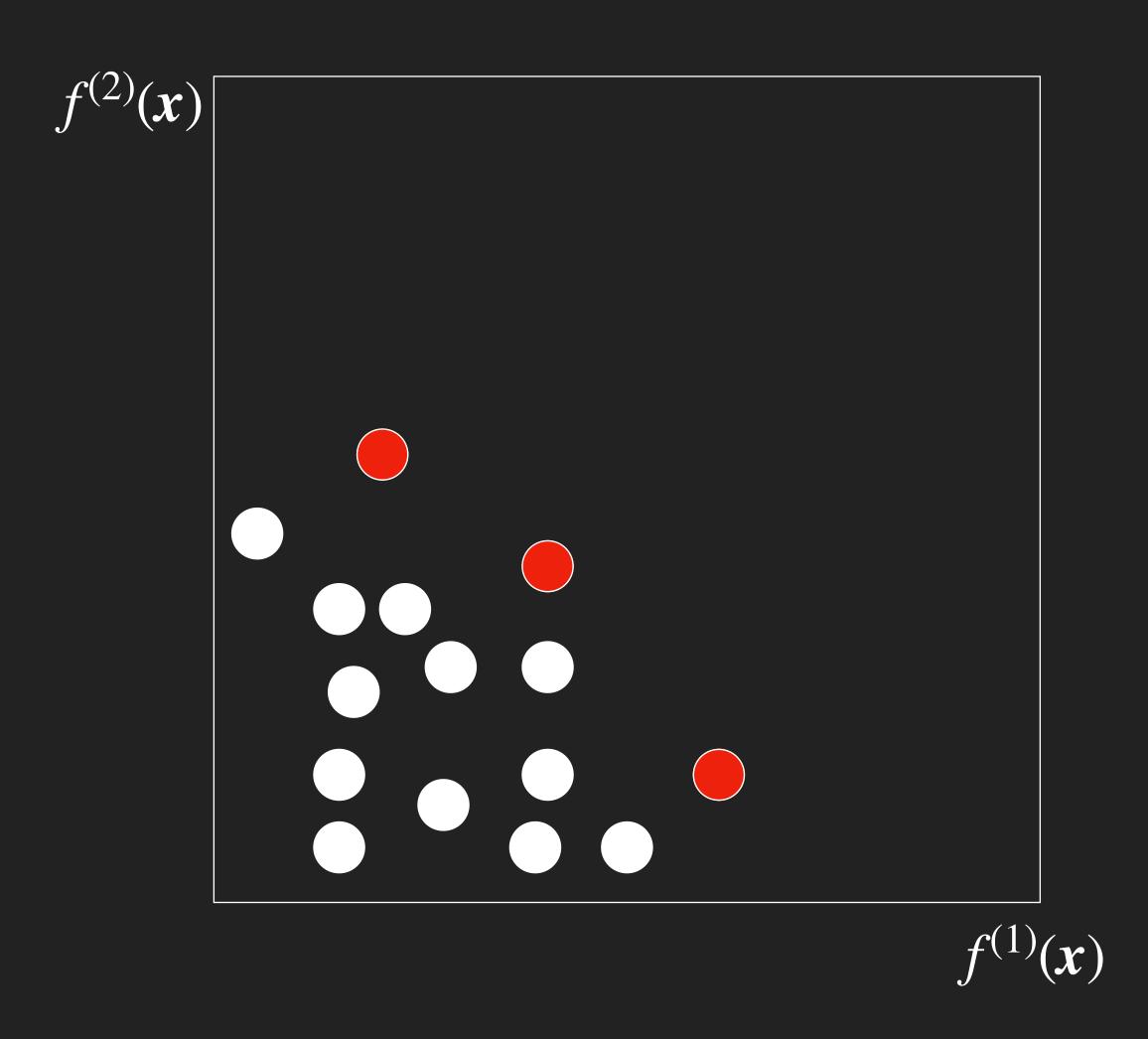
Pareto Frontier



Pareto Frontier



Pareto Frontier



• The realized parameters are different than intended

- The realized parameters are different than intended
- The performance metrics might degrade

- The realized parameters are different than intended
- The performance metrics might degrade
 - Sometimes the effects are catastrophic

- The realized parameters are different than intended
- The performance metrics might degrade
 - Sometimes the effects are catastrophic
- Example: In vaccine freeze drying,

- The realized parameters are different than intended
- The performance metrics might degrade
 - Sometimes the effects are catastrophic
- Example: In vaccine freeze drying,
 - Higher temperatures are more efficient, but too high of a temperature can ruin the product

• We consider the setting where:

- We consider the setting where:
 - We can sample from the input noise process $P(\xi;x)$

- We consider the setting where:
 - We can sample from the input noise process $P(\xi;x)$
 - We have access to a simulator during optimization, without input noise

- We consider the setting where:
 - We can sample from the input noise process $P({m \xi};{m x})$
 - We have access to a simulator during optimization, without input noise
 - Input noise is present at implementation time

- We consider the setting where:
 - We can sample from the input noise process $P(\xi;x)$
 - We have access to a simulator during optimization, without input noise
 - Input noise is present at implementation time
 - The way in which input noise affects the input
 parameters x ◊ ξ is known (e.g. additive, multiplicative, etc).

Example risk measures

Example risk measures

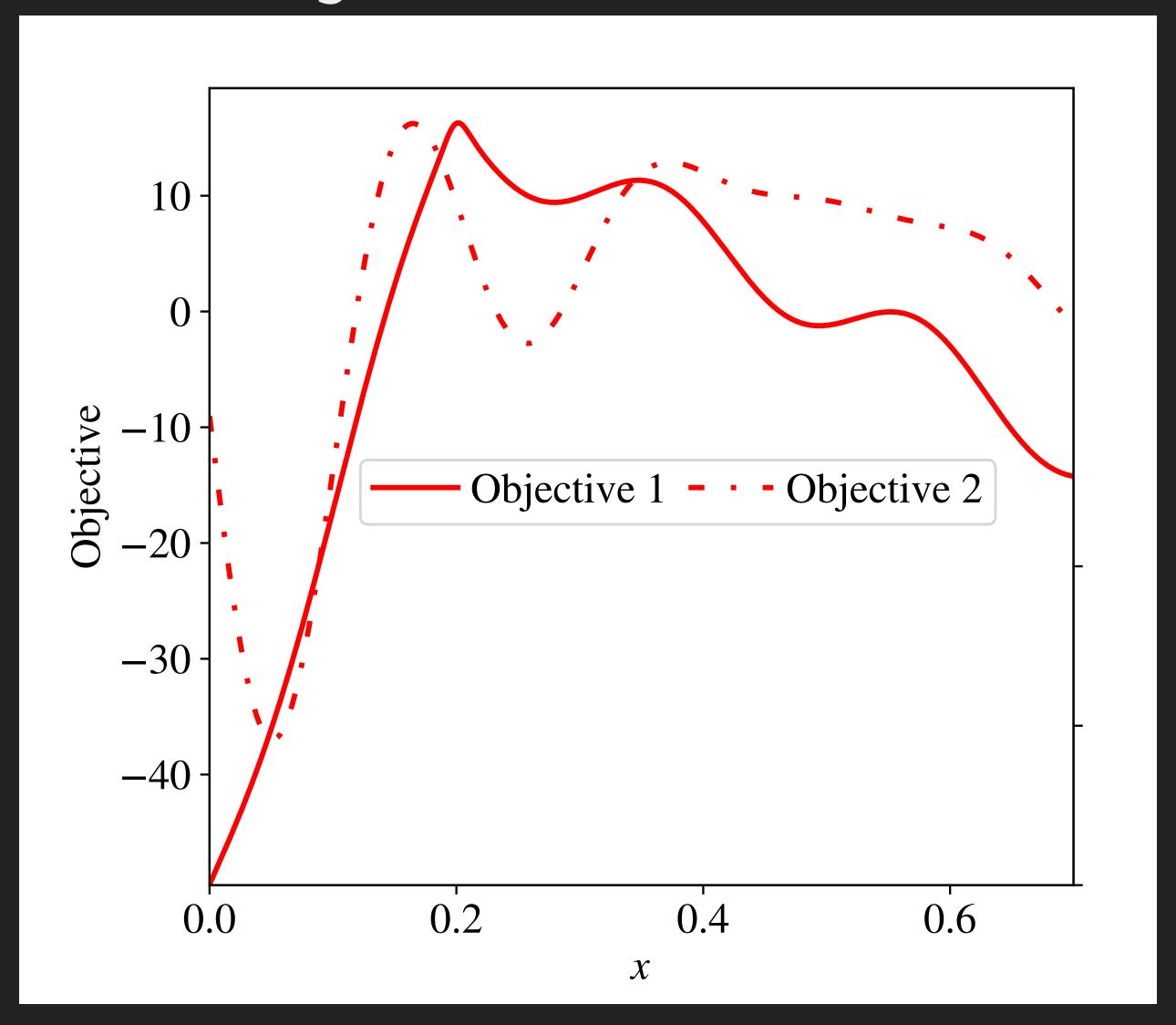
• Expected Bayes Risk: $\mathbb{E}_{\xi \sim P(\xi)}[f(x \diamond \xi)]$

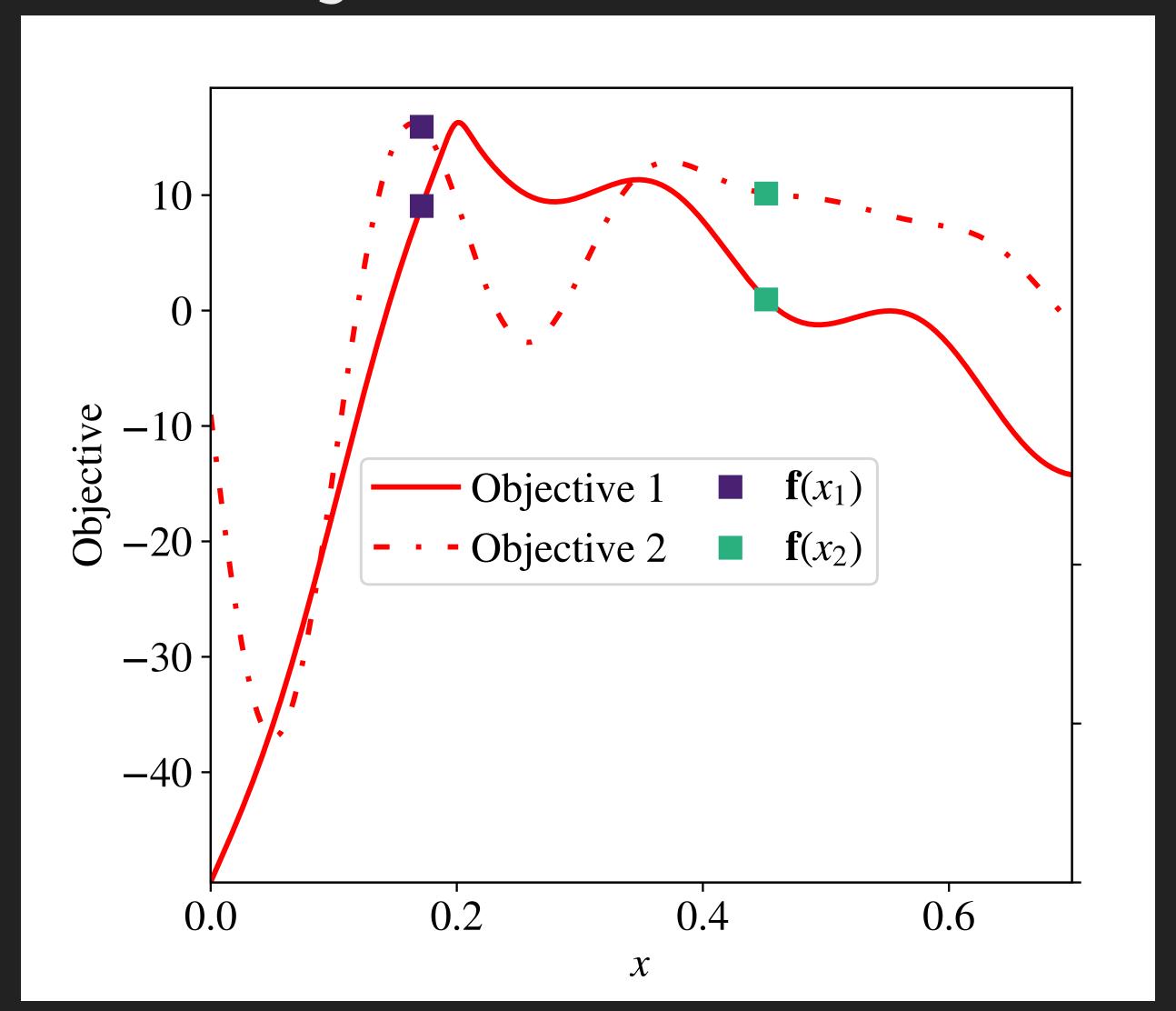
Example risk measures

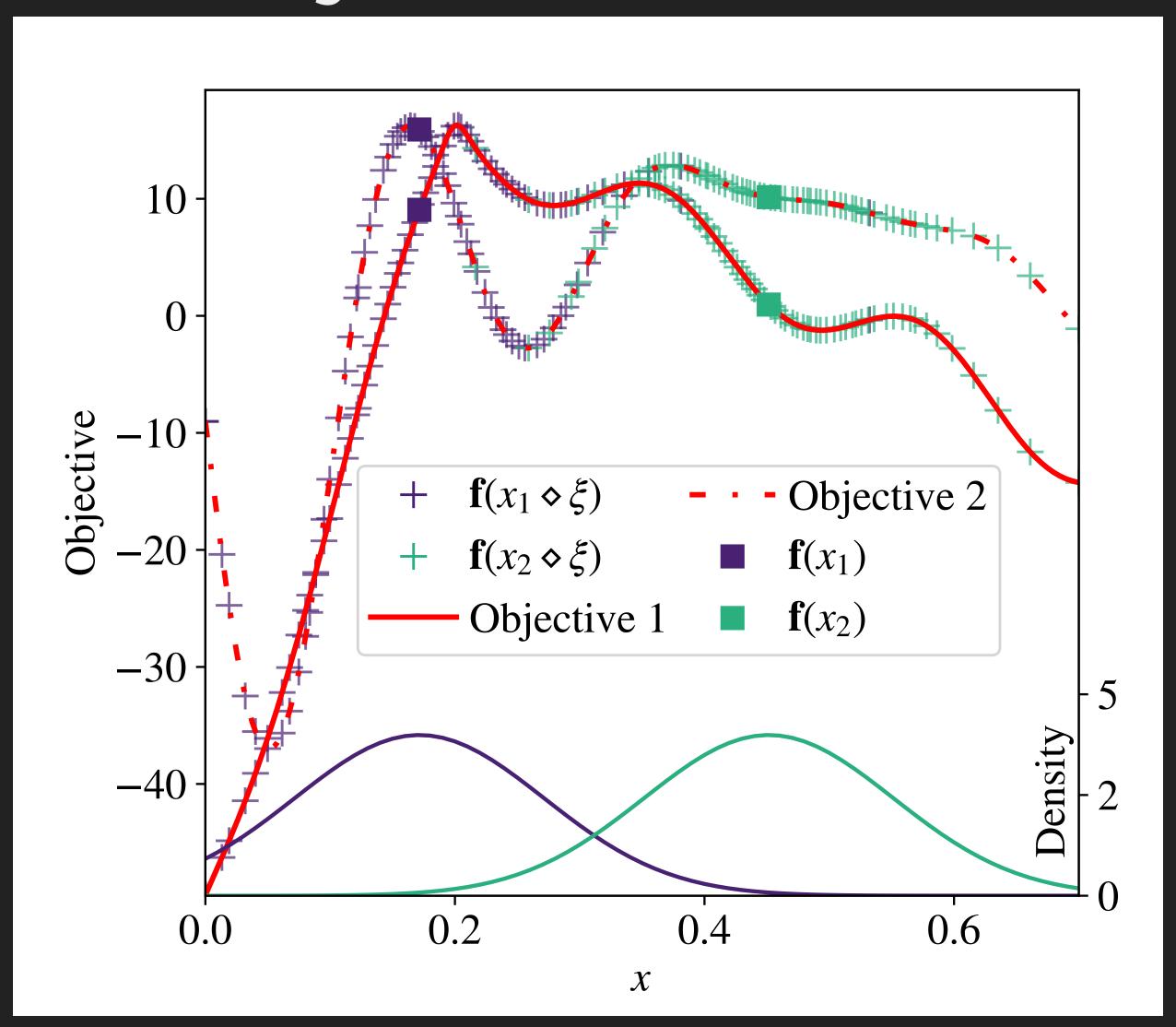
- Expected Bayes Risk: $\mathbb{E}_{\xi \sim P(\xi)}[f(x \diamond \xi)]$
- Worst case: $\min_{\xi \sim P(\xi)} [f(x \diamond \xi)]$

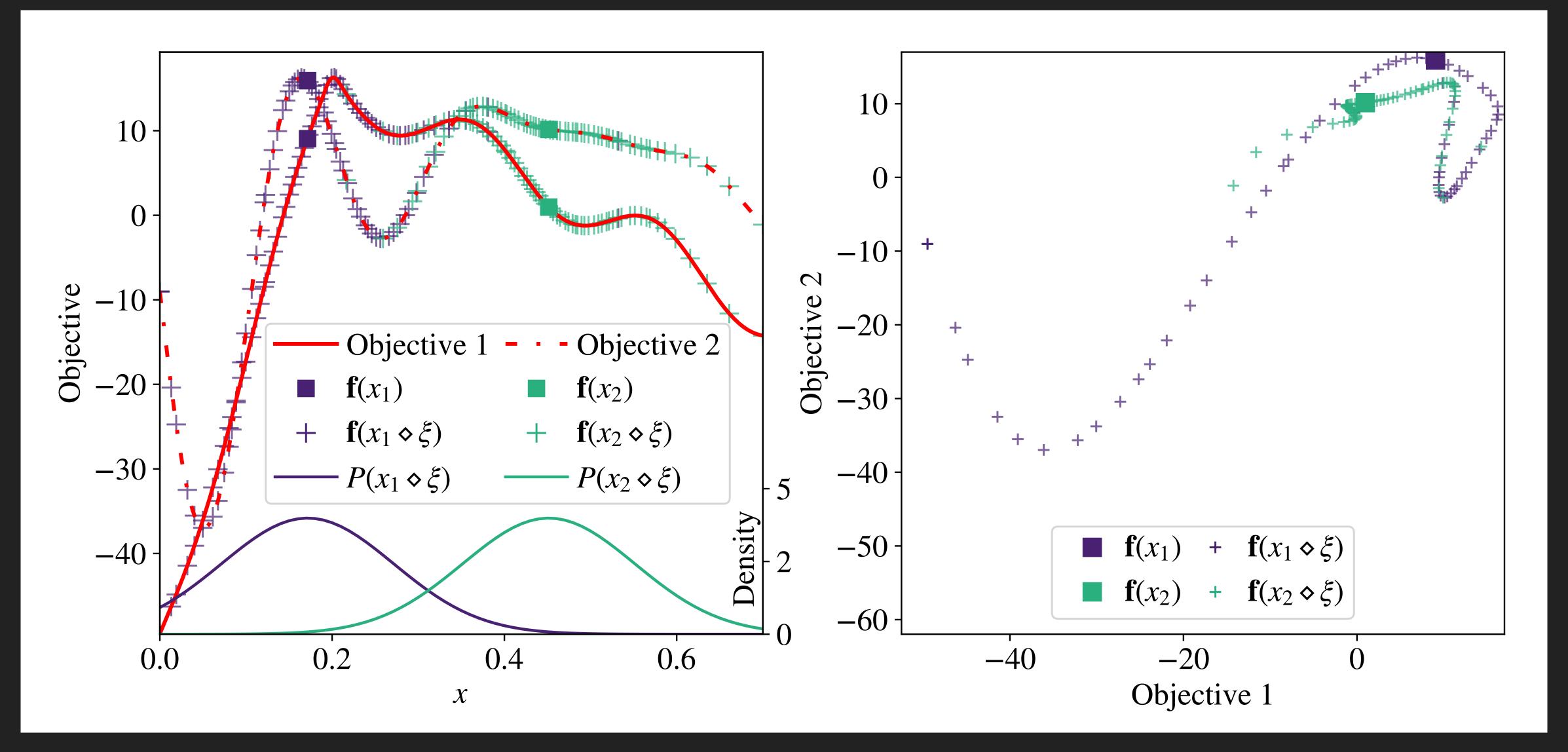
Example risk measures

- Expected Bayes Risk: $\mathbb{E}_{\xi \sim P(\xi)}[f(x \diamond \xi)]$
- Worst case: $\min_{\xi \sim P(\xi)} [f(x \diamond \xi)]$
- Value-At-Risk: lower bound on $f(x \diamond \xi)$ with probability α





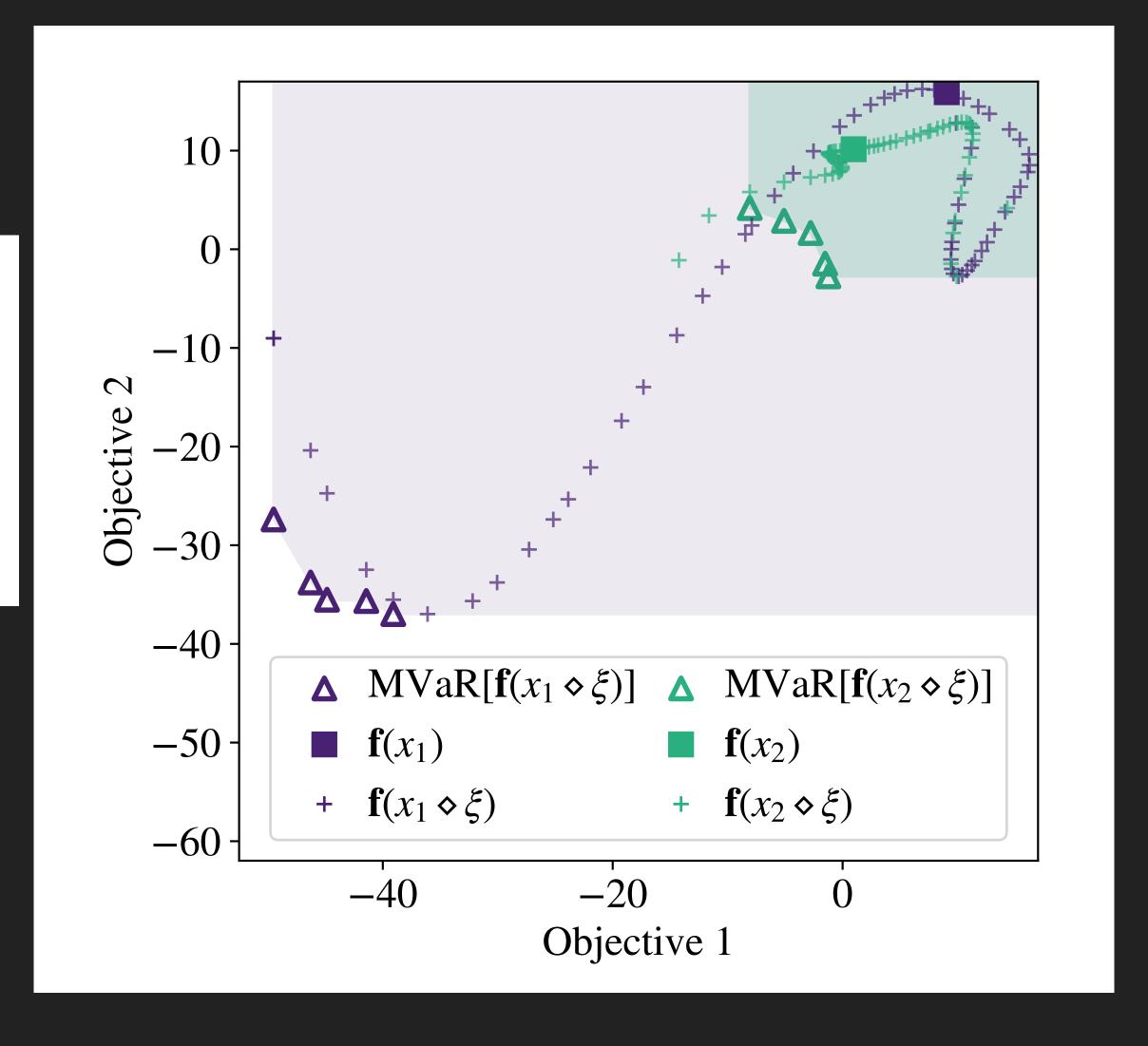




Multivariate Value-At Risk (MVaR)

Definition 4.2. The MVAR of f for a given point x and confidence level $\alpha \in [0, 1]$ is:

$$egin{aligned} \mathsf{MVAR}_{lpha}ig[m{f}(m{x} \diamond m{\xi})ig] = \ & \mathsf{PARETO}ig(ig\{m{z} \in \mathbb{R}^M: Pig[m{f}(m{x} \diamond m{\xi}) \geq m{z}ig] \geq lphaig\}ig). \end{aligned}$$

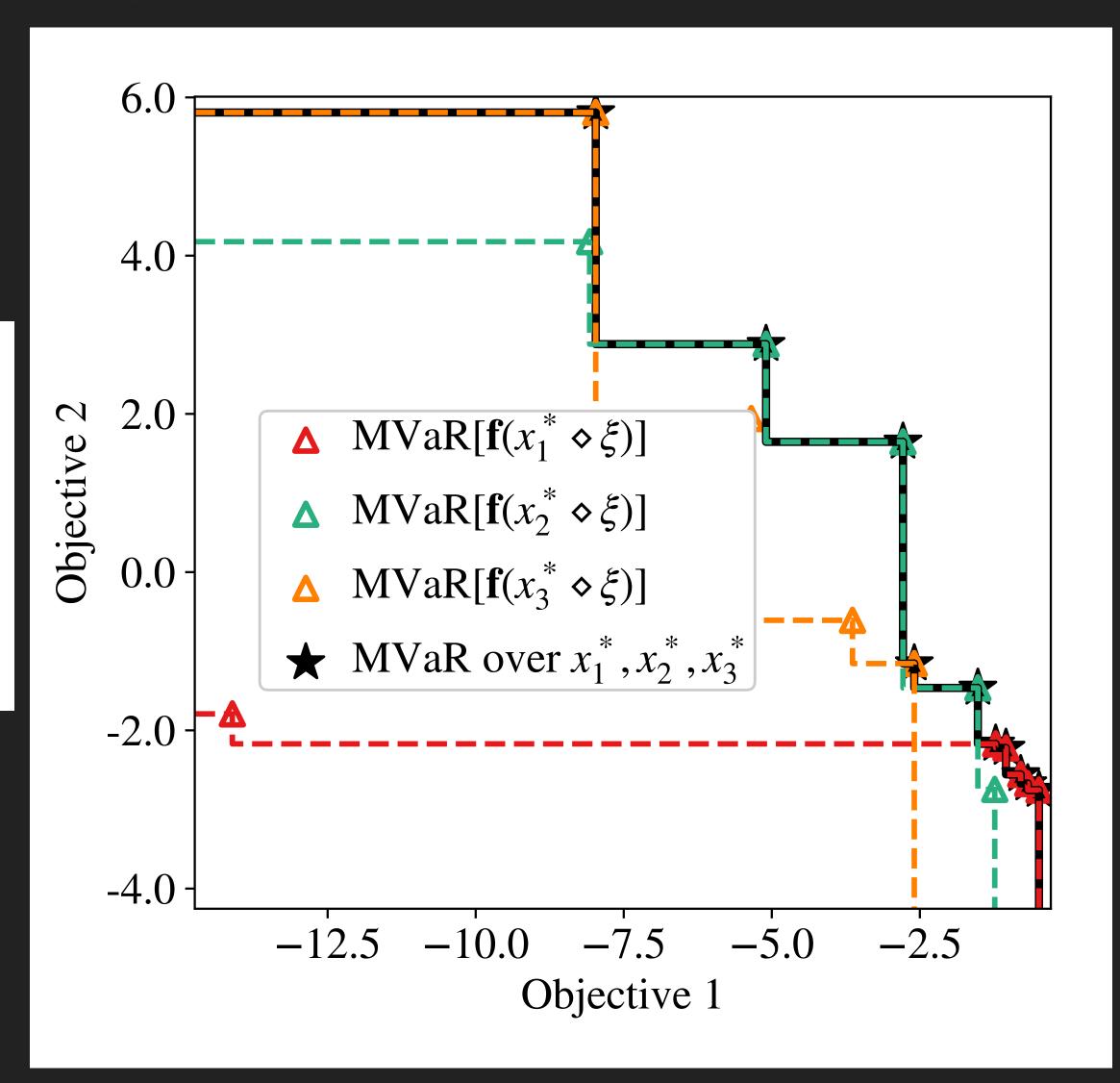


Global MVaR

Definition 4.3. The MVAR for a set of points X is:

$$\mathsf{MVAR}_{\alpha}\big[\{\boldsymbol{f}(\boldsymbol{x}\diamond\boldsymbol{\xi})\}_{\boldsymbol{x}\in X}\big] = \\ \mathsf{PARETO}\bigg(\bigcup_{\boldsymbol{x}\in X}\mathsf{MVAR}_{\alpha}\big[\boldsymbol{f}(\boldsymbol{x}\diamond\boldsymbol{\xi})\big]\bigg).$$

Our optimization goal is to optimize global MVaR



Issues with Direct MVaR Optimization

Issues with Direct MVaR Optimization

MVaR is expensive to compute

Issues with Direct MVaR Optimization

- MVaR is expensive to compute
 - Requires approximating multivariate CDFs

Issues with Direct MVaR Optimization

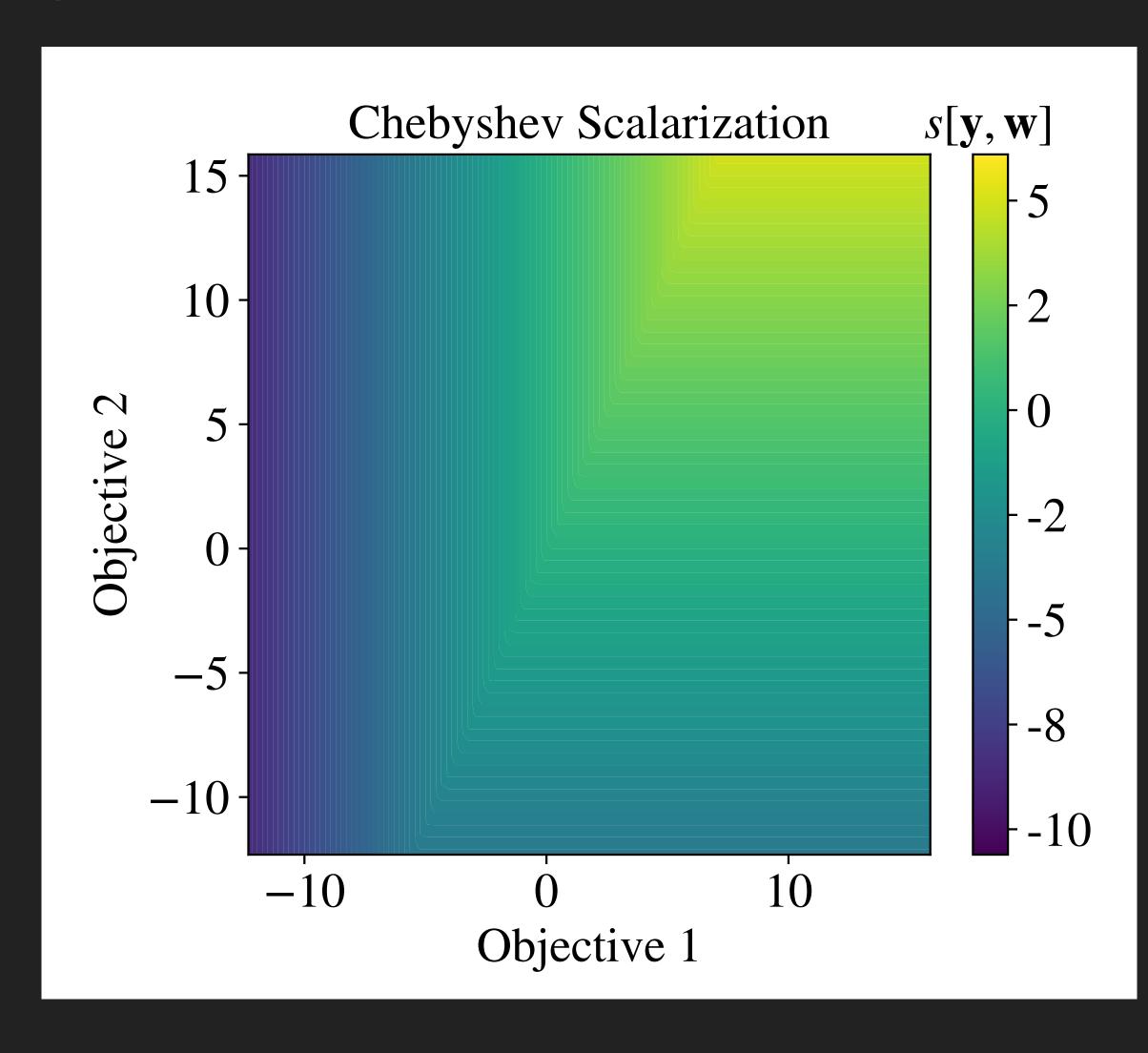
- MVaR is expensive to compute
 - Requires approximating multivariate CDFs
 - Exponential in the number of objectives

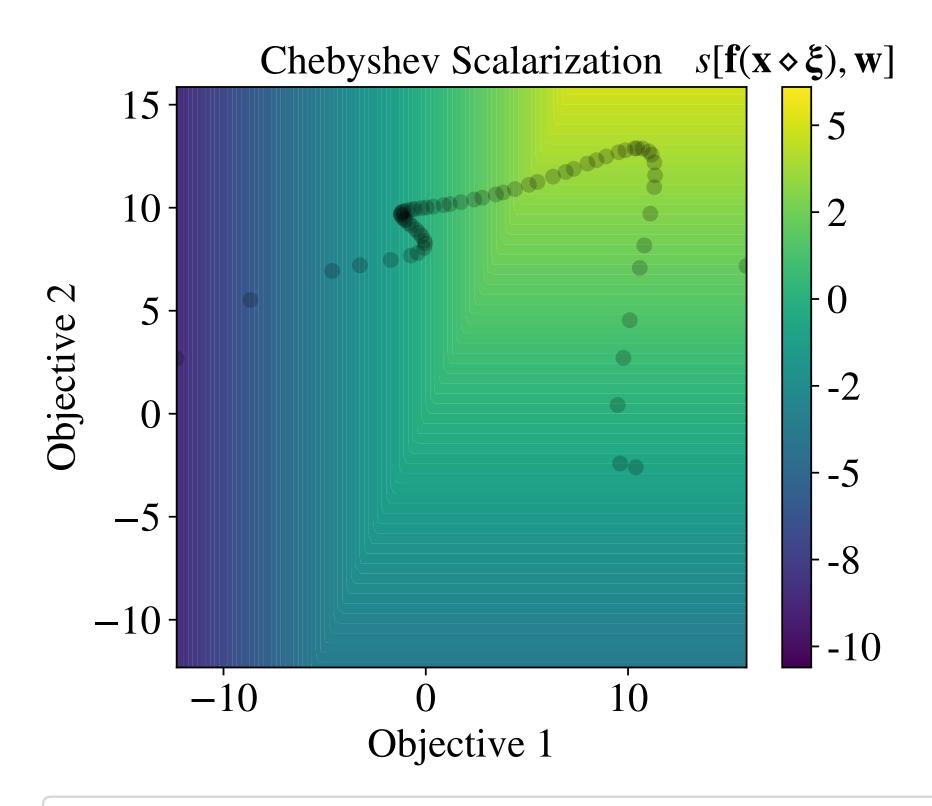
Relationship Between MVaR and Scalarizations

Chebyshev Scalarization:

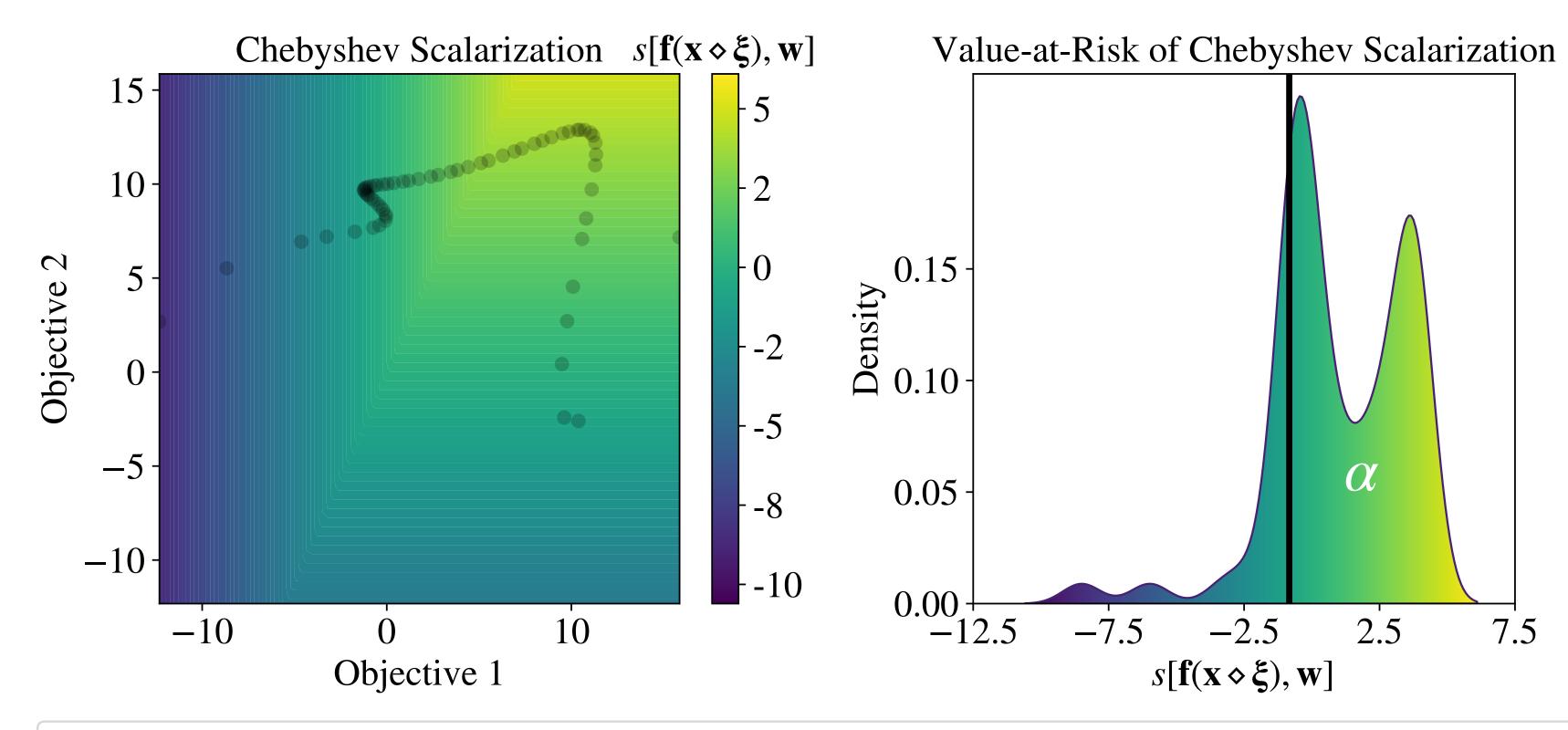
$$S[y, w] = \min_{i} w_{i}y_{i}$$

$$w \in \Delta^{M-1}_+$$

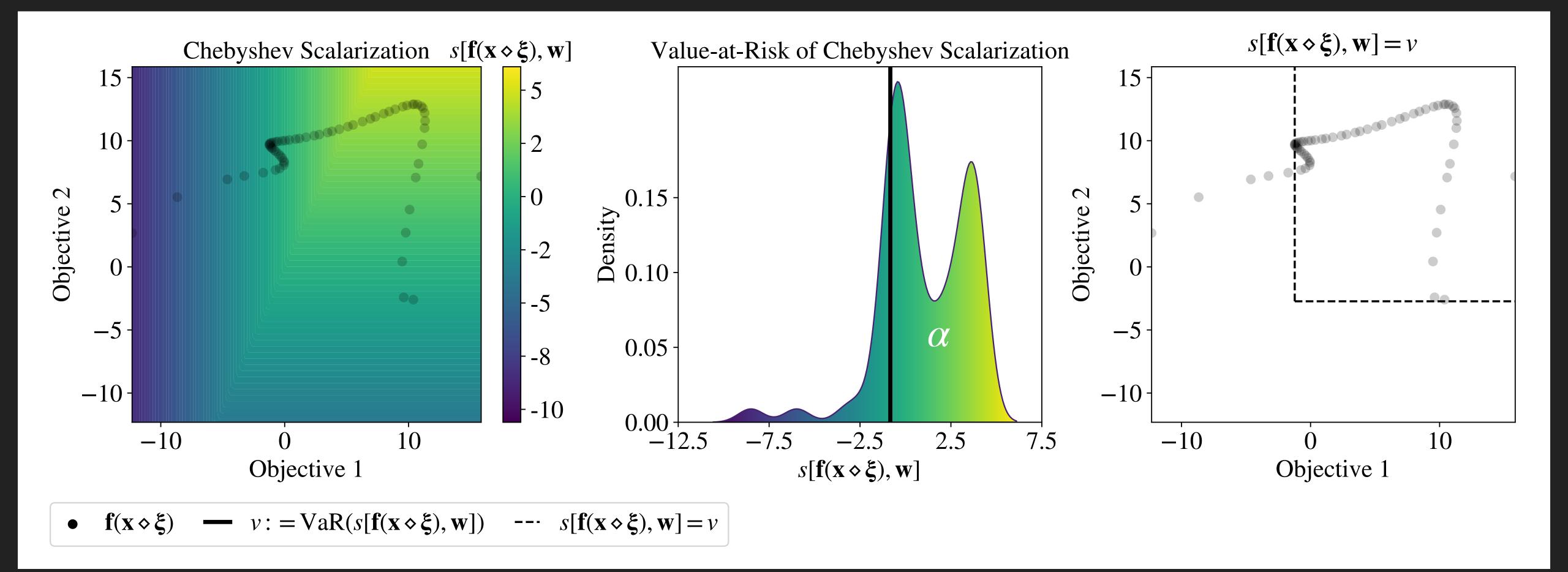


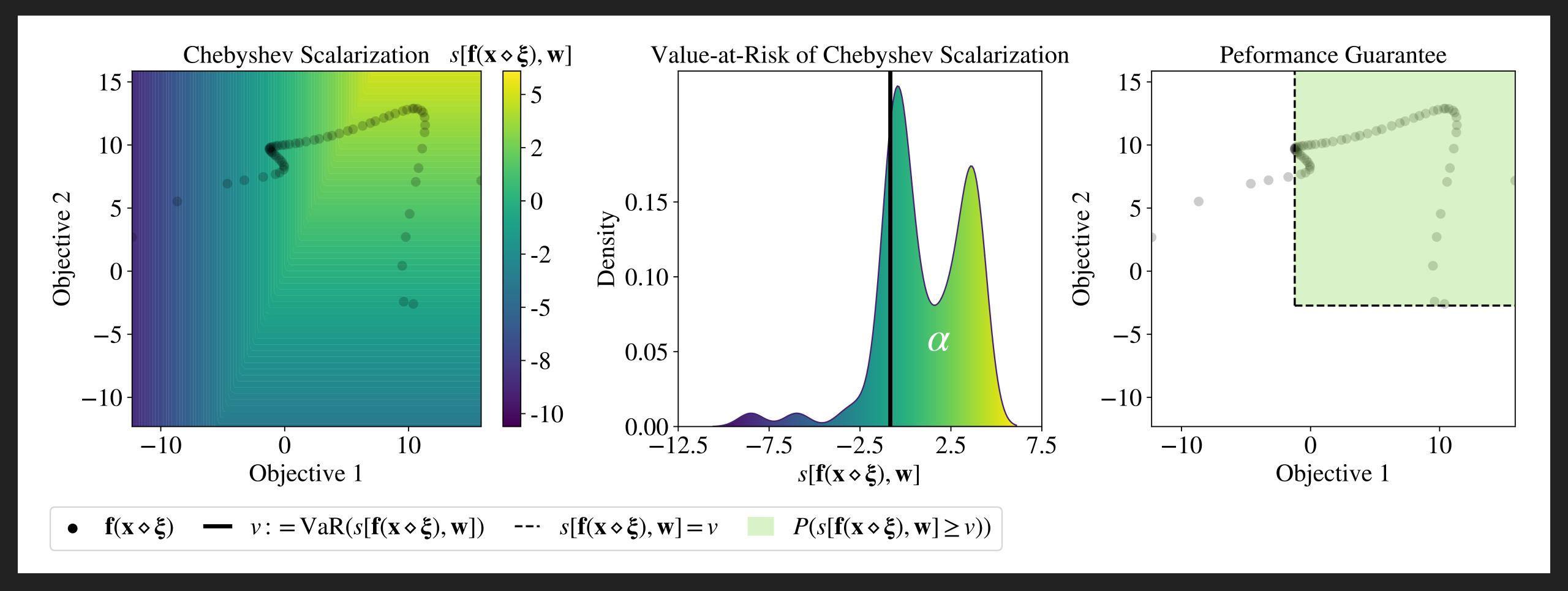


• $f(x \diamond \xi)$



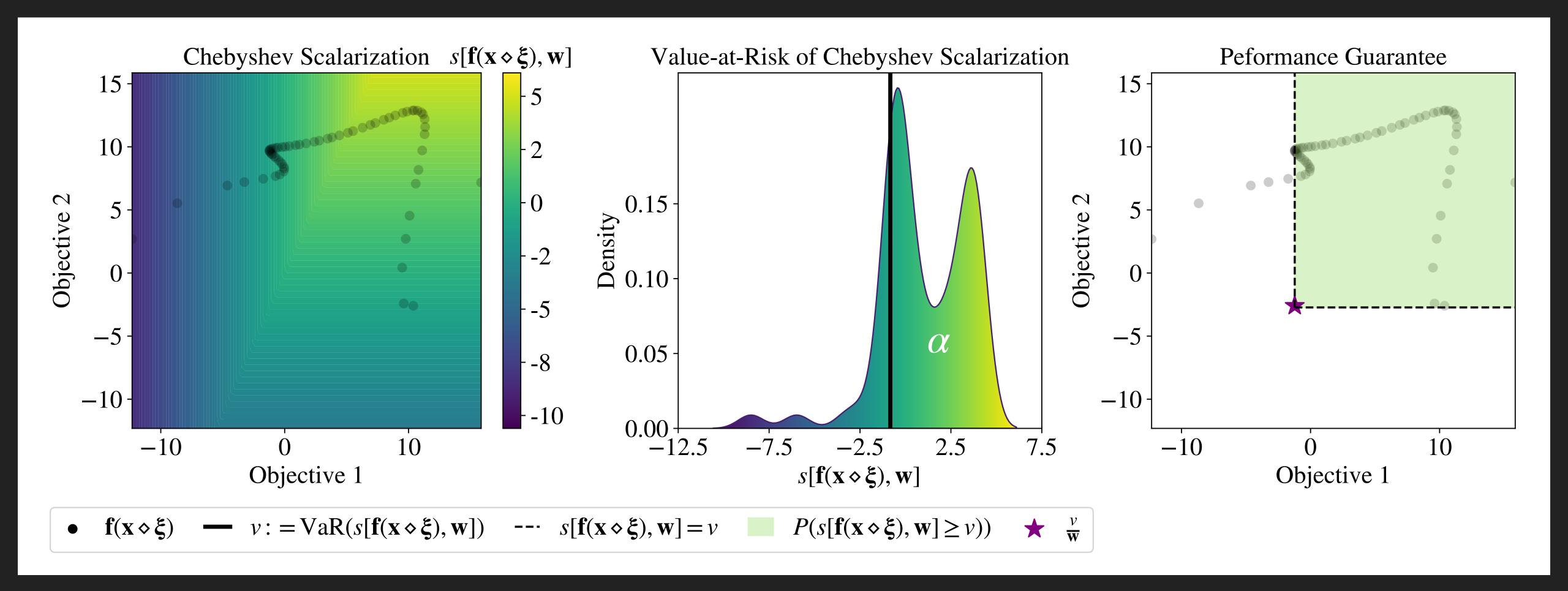
• $\mathbf{f}(\mathbf{x} \diamond \boldsymbol{\xi})$ - $\mathbf{v} := \mathrm{VaR}(s[\mathbf{f}(\mathbf{x} \diamond \boldsymbol{\xi}), \mathbf{w}])$





VaR of Scalarization

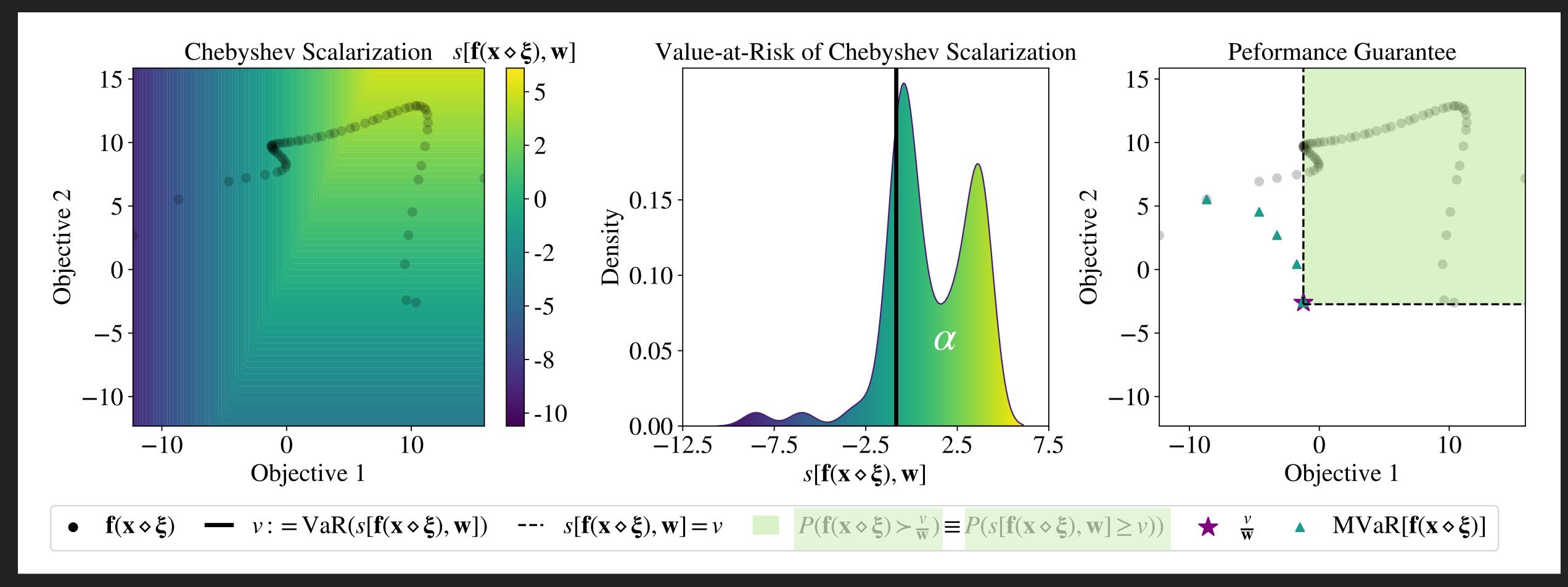
 $VAR_{\alpha}\big[s[\boldsymbol{f}(\boldsymbol{x}\diamond\boldsymbol{\xi}),\boldsymbol{w}]\big] = \sup\{z\in\mathbb{R}: P\big[s[\boldsymbol{f}(\boldsymbol{x}\diamond\boldsymbol{\xi}),\boldsymbol{w}]\geq z\big]\geq \alpha\}.$



VaR of Scalarization

 $VAR_{\alpha}\big[s[\boldsymbol{f}(\boldsymbol{x}\diamond\boldsymbol{\xi}),\boldsymbol{w}]\big] = \sup\{z\in\mathbb{R}: P\big[s[\boldsymbol{f}(\boldsymbol{x}\diamond\boldsymbol{\xi}),\boldsymbol{w}]\geq z\big]\geq \alpha\}.$

Bijection (Main Result)



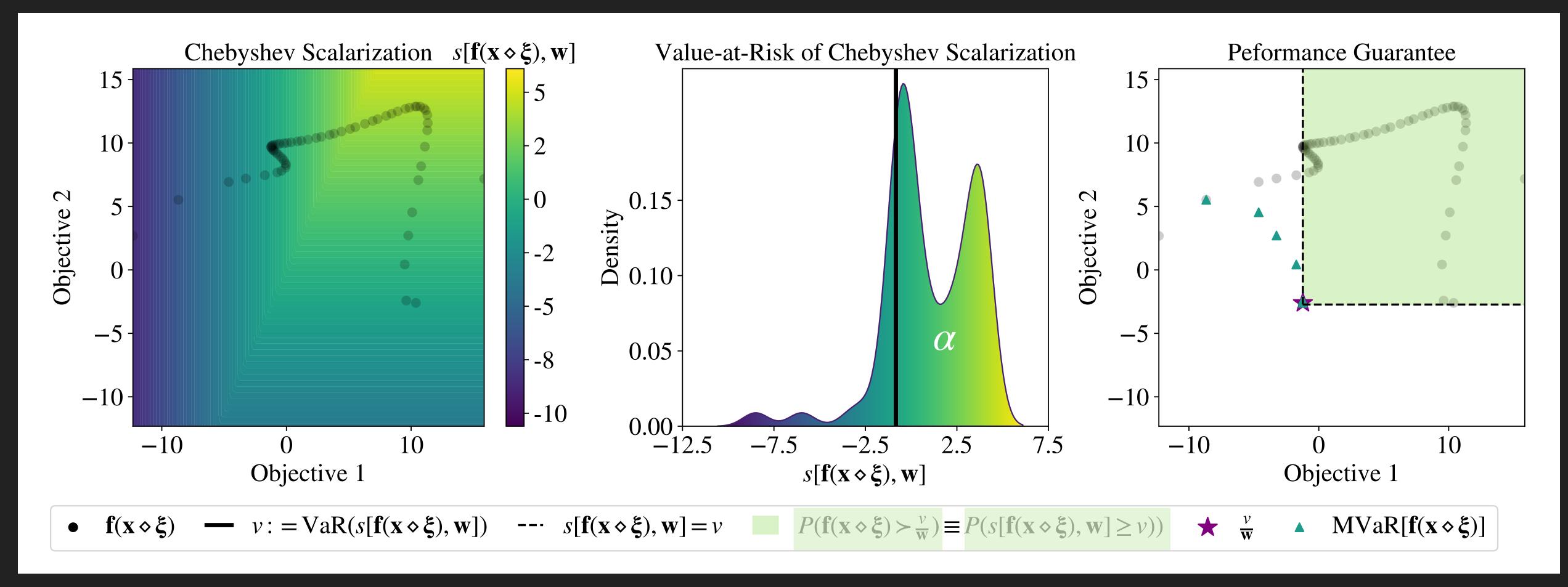
MVaR

 $egin{aligned} \mathsf{MVAR}_{lpha}ig[m{f}(m{x} \diamond m{\xi})ig] = \ & \mathsf{PARETO}ig(ig\{m{z} \in \mathbb{R}^M: m{P}ig[m{f}(m{x} \diamond m{\xi}) \geq m{z}ig] \geq lphaig\}ig). \end{aligned}$

VaR of Scalarization

 $VAR_{\alpha}[s[\boldsymbol{f}(\boldsymbol{x}\diamond\boldsymbol{\xi}),\boldsymbol{w}]] = \sup\{z \in \mathbb{R} : P[s[\boldsymbol{f}(\boldsymbol{x}\diamond\boldsymbol{\xi}),\boldsymbol{w}] \geq z] \geq \alpha\}.$

Bijection (Main Result)



MVaR

 $egin{aligned} \mathsf{MVAR}_{lpha}ig[m{f}(m{x} \diamond m{\xi})ig] = \ & \mathsf{PARETO}ig(ig\{m{z} \in \mathbb{R}^M: m{P}ig[m{f}(m{x} \diamond m{\xi}) \geq m{z}ig] \geq lphaig\}ig). \end{aligned}$

VaR of Scalarization

 $\operatorname{VAR}_{\alpha}ig[s[oldsymbol{f}(oldsymbol{x}\diamondoldsymbol{\xi}),oldsymbol{w}]ig]=\sup\{z\in\mathbb{R}:Pig[s[oldsymbol{f}(oldsymbol{x}\diamondoldsymbol{\xi}),oldsymbol{w}]\geq zig]\geq lpha\}.$

MARS: MVaR Approximation via Random Scalarizations

The bijection motivates

 a generative process
 for optimizing different

 MVaR trade-offs using

 Bayesian Optimization

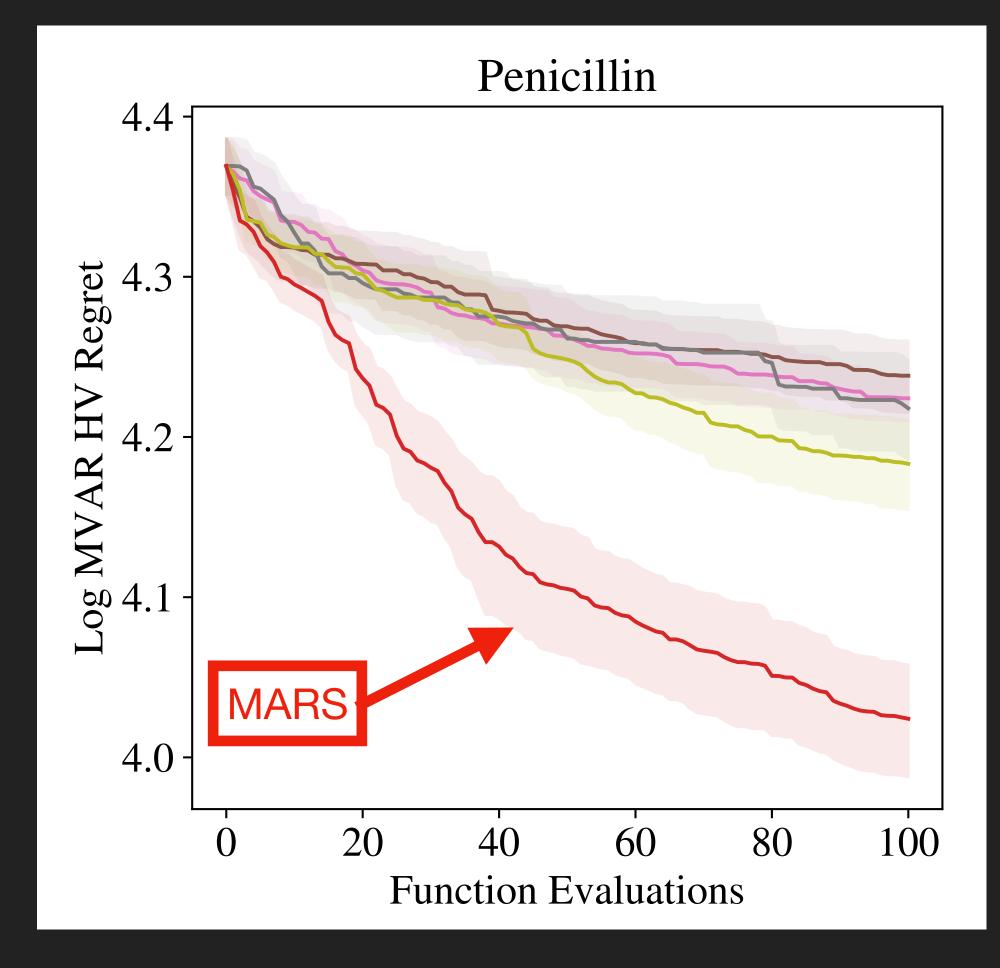
Algorithm 1 MARS

- 1: Input: input noise distribution $P(\xi)$, search space \mathcal{X} , black-box objectives $f: \mathcal{X} \to \mathbb{R}^M$, confidence level α
- 2: Initialize $\mathcal{D}_0 \leftarrow \emptyset$, $GP_0 \leftarrow GP(\mathbf{0}, k)$
- 3: for n = 1 to N do
- 4: Sample $\boldsymbol{w} \sim \Delta_+^{M-1}$
- 5: Set objective to be $l(\boldsymbol{x}) = \text{VAR}_{\alpha}(s[\boldsymbol{f}(\boldsymbol{x} \diamond \boldsymbol{\xi}), \boldsymbol{w}])$
- 6: $\boldsymbol{x}_n \leftarrow \arg\max_{\boldsymbol{x} \in \mathcal{X}} \operatorname{acq}(\boldsymbol{x}, l)$
- 7: Evaluate $\boldsymbol{f}(\boldsymbol{x}_n), \mathcal{D}_n \leftarrow \mathcal{D}_{n-1} \cup \{\boldsymbol{x}_n, \boldsymbol{f}(\boldsymbol{x}_n)\}$
- 3: Update posterior GP_n conditional on $\{x_n, f(x_n)\}$
- 9: end for

Experiment: Penicillin Production

- Objectives:
 - Penicillin yield (maximize)
 - CO2 output (minimize)
 - Time-to-ferment (minimize)
- 7 Parameters:

Parameter	Noise Level
Culture Volume	3%
Biomass Concentration	3%
Temperature	0.5%
Glucose Concentration	2%
Substrate Feed Rate	1%
Substrate Feed Concentration	1%
H ⁺ Concentration	1%



Paper and Open Source Code

Paper: https://arxiv.org/abs/2202.07549

Code: github.com/facebookresearch/robust_mobo

