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Image-to-Image Regression
Input: Image

Output: Another Image

Quantitative
Brighttield phase

E.g. Modality Transfer

Low-Res

E.g. Super-Resolution




Problem: Hallucinations

The model may introduce spurious new features...

...or “smooth away” important details.
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Solution: Uncertainty Quantification
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Solution: Uncertainty Quantification

(1) Compute heuristics
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https://arxiv.org/abs/2101.02703

What’s New: DFUQ

“Distribution-Free” --- No assumptions on the prediction system,
only i.i.d. or exchangeability assumed of the data.

Classical Statistics Distribution-Free UQ

Parametric distribution No assumed distribution
or nonparametric complexity class

Modity prediction system to get Works for any prediction system
guarantees without retraining

Asymptotics Finite-sample guarantees
Central limit theorem Concentration inequalities,

exchangeability



Examples

Phase imaging of leukocvtes

input brightfield predicted QPI  ground truth QPI uncertainty map  difference image

Supperresolution electron microscopy of fly brain
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Conclusion: Not your Grandma’s Intervals

In real life, problems have complex structure and real-world consequences.

* Massachussets General Hospital:
* Providing guarantees on automated diagnostics of spinal stenosis. [LAS22]
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* Protein design
« Calibration and test data are dependent --- “Feedback Covariate Shift” [FBAL]'22]
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Moving towards modular, black-box uncertainty in imaging.


https://arxiv.org/abs/2207.02238
https://arxiv.org/abs/2202.03613

Come find us:

Poster Session: Hall E #629
Saturday Workshop on DFUQ: [link]

Twitter: (@wml angelopoulos


https://twitter.com/ml_angelopoulos
https://dfuq.rocks/22
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