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Sloppy eigenspectrum
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Figure: Eigenspectra for a trained wide residual network on CIFAR-10.
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Analytical results for how sloppiness of data leads to sloppiness of

neural network quantities

Trace of the FIM and Hessian are bounded by that of the data correlation matrix
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The kth block on the diagonal of the FIM is sloppy if the activation h¥ of that block are sloppy
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PAC-Bayes generalization bounds

Theorem (PAC-Bayes generalization bound McAllester (1999))

Let e(Q) be the polulation error of a randomized hypothesis with a distribution Q, and its
empirical error be é,(Q). For a prior P, with probability at least 1 — 6 over draws of n samples,

we have
«(Q) < Q)+ \/ KL(Q2,(/2) _+1|;>g(§)'
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PAC-Bayes generalization bounds

Theorem (PAC-Bayes generalization bound McAllester (1999))

Let e(Q) be the polulation error of a randomized hypothesis with a distribution Q, and its
empirical error be é,(Q). For a prior P, with probability at least 1 — 6 over draws of n samples,
we have

) KL(Q, P) + log($)
e(Q) < é(Q) +\/ 2= 1) 5)

This is similar to bounds in Vapnik-Chernovenkis theory where there exists a constant V such
that the generalization error of any hypothesis h from a model class can be bounded as

V —logd

e(h) < é(h) + .

(1)

For deep networks, we have V = ©(p), which leads to vacuous generalization bounds.
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PAC-Bayes generalization bounds

We obtained a non-vacuous bound using the sloppiness of Hessian. This is the only
analytical non-vacuous generalization bound for deep networks today.
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PAC-Bayes generalization bounds

We obtained a non-vacuous bound using the sloppiness of Hessian. This is the only
analytical non-vacuous generalization bound for deep networks today.

For a two-layer fully-connected MNIST network with 600 hidden neurons, the PAC-Bayes
bound is 0.32.
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PAC-Bayes generalization bounds

We obtained a non-vacuous bound using the sloppiness of Hessian. This is the only
analytical non-vacuous generalization bound for deep networks today.

For a two-layer fully-connected MNIST network with 600 hidden neurons, the PAC-Bayes
bound is 0.32.

We have also developed numerical techniques to further optimize such bounds using
data-distribution dependent priors.
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Effective dimensionality of a deep network

Definition

Define the effective dimensionality for a
deep network at local minimum w as

p(n) = 20, YN = i ) @)
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Effective dimensionality of a deep network
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Figure: FC-600-2 with about 0.8 million
parameters has effective dimensionality about
2500 which is about 0.3% of number of
parameters. 11/13



Thanks for watching!
Scan to read the paper.
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