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Sloppy eigenspectrum
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Figure: Eigenspectra for a trained wide residual network on CIFAR-10.
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Analytical results for how sloppiness of data leads to sloppiness of

neural network quantities

Theorem

Trace of the FIM and Hessian are bounded by that of the data correlation matrix

tr{F}, tr{H} ≤ ctr(E[xxT ])
L∏

j=0

||w j ||22

 L∑
j=0

1

||w j ||22

 .

Theorem

The kth block on the diagonal of the FIM is sloppy if the activation hk of that block are sloppy

spec

(
E

[
dzi
dwk

dzi
dwk

⊤
])

⪯ C
L∏

j=k+1

||w j ||22 · spec(Idk+1
)⊗ spec

(
E
[
(hkhk)⊤

])
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PAC-Bayes generalization bounds

Theorem (PAC-Bayes generalization bound McAllester (1999))

Let e(Q) be the polulation error of a randomized hypothesis with a distribution Q, and its
empirical error be ên(Q). For a prior P, with probability at least 1− δ over draws of n samples,
we have

e(Q) ≤ ê(Q) +

√
KL(Q,P) + log

(
n
δ

)
2(n − 1)

.

This is similar to bounds in Vapnik-Chernovenkis theory where there exists a constant V such
that the generalization error of any hypothesis h from a model class can be bounded as

e(h) ≤ ê(h) +

√
V − log δ

n
(1)

For deep networks, we have V = Θ(p), which leads to vacuous generalization bounds.
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PAC-Bayes generalization bounds

We obtained a non-vacuous bound using the sloppiness of Hessian. This is the only
analytical non-vacuous generalization bound for deep networks today.

For a two-layer fully-connected MNIST network with 600 hidden neurons, the PAC-Bayes
bound is 0.32.

We have also developed numerical techniques to further optimize such bounds using
data-distribution dependent priors.
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Effective dimensionality of a deep network

Definition

Define the effective dimensionality for a
deep network at local minimum w as

p(n, ϵ) =
∑p

i=1 1
{
|λi | ≥ ϵ

2(n−1)

}
, (2)
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Figure: FC-600-2 with about 0.8 million
parameters has effective dimensionality about
2500 which is about 0.3% of number of
parameters.
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Thanks for watching!
Scan to read the paper.
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