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Background

From: Explaining and Harnessing Adversarial Examples. In ICLR, 2015.

The Deep Neural Networks are Vulnerable to Adversarial Examples

It’s necessary to find a reliable way to evaluate adversarial robustness of a DNN.
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Motivations

Note : MM3, MM5 and MM+ are different versions of our provided MM attack.

Adversarial Attack: The Dilemma between Reliability and Computational Efficiency.

Benchmark 1: Projected Gradient Descent Attack (PGD), high computational efficiency but low reliability 

Benchmark 2: The attack ensemble AutoAttack, high reliability but low computational efficiency 
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Minimum-Margin Attack

The necessary and sufficient condition to the 
complete robustness of the classifier.

According the condition 1, we define the most 
adversarial example.
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Minimum-Margin Attack

Using margin to identify the “most adversarial example”
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Minimum-Margin Attack

Sequential TArget Ranking Selection (STATS)

1)Pre-selecting-Targets Strategy:

Selecting partial targets achieves 
comparable performance.

2)Ranking-Sequential-Attack Strategy:

Consider the false target with the highest 
predicted probability first; if the attack 
succeeds, then terminate attacks on other 
targets; otherwise, continue considering 
the false target with the second highest 
predicted probability.
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Minimum-Margin Attack

Condition 2 and Condition 3 follow the setting of the adaptive 
step size selection in [1]:

Reference:
[1]:Croce, F. and Hein, M. Reliable evaluation of adversarial robustness with an 
ensemble of diverse parameter-free attacks. In ICML, 2020.

With the mentioned strategies, we summarize our scheme of 
MM attack.
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Experiments

Baselines:

• PGD: Projected Gradient Descent Attack [1]

• CW: Carlini and Wagner attack [2]

• A-DLR: PGD with adaptive step size and DLR loss [3]

• A-CE: PGD with adaptive step size and CE loss [3]

• FAB: A component of the AutoAttack ensemble [3]

• Square: A component of the AutoAttack ensemble [3]

• AA: AutoAttack with untargeted version [3]

• T-AA: AutoAttack with targeted version [3]

Reference:
[1]:Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep learning models resistant toadversarial attacks. In ICLR, 2018.
[2]:Carlini, N. and Wagner, D. Towards evaluating the robustness of neural networks. In CVPR, 2017.
[3]:Croce, F. and Hein, M. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In ICML, 2020.
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Experiments

Main results on different datasets.
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Experiments

Main results on different well-trained models provided in RobustBench.
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Experiments

Adversarial Training with MM Attack.

Main results on CIFAR-10
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Thank You!
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