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The Deep Neural Networks are Vulnerable to Adversarial Examples
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From: Explaining and Harnessing Adversarial Examples. In ICLR, 2015.

It’s necessary to find a reliable way to evaluate adversarial robustness of a DNN.
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Adversarial Attack: The Dilemma between Reliability and Computational Efficiency.

Benchmark 1: Projected Gradient Descent Attack (PGD), high computational efficiency but low reliability

Benchmark 2: The attack ensemble AutoAttack, high reliability but low computational efficiency
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Note : MM3, MMS5 and MM+ are different versions of our provided MM attack.
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Minimum-Margin Attack

R. Gao, et al., ICML’22

The necessary and sufficient condition to the
complete robustness of the classifier.

Condition 1. Given a natural example x with its true label
y, the K -class classifier f satisfies

V' € Be[z], z,(z') — max z;(z") > 0,
' i#yY

where Be[z] = {2/ | doo(x,2") < €}; 2y(2) = f(a'),;

z(2) = (@),

According the condition 1, we define the most
adversarial example.

Definition 1 (The most adversarial example). Given a nat-
ural example x with its true label vy, the most adversarial
example x* within B.|x] is defined as:

Vz!' € B[], z* = argmax —(zy(z') — max z;(z")),

! £y

where B [x] = {2’ | doo(z,2") < €} is the closed ball of
radius € > 0 centered at x; zy(z') = f(2'),; zi(2') =
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Minimum-Margin Attack

R. Gao, et al., ICML’22

Using margin to identify the “most adversarial example”
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Figure 2. Minimum margin of probability. p denotes the predicted probability, p, and p; are the predicted probability on the true label y
and a targeted false label ¢. The gray shape is the image of the adversarial variants x” within the bounded perturbation ball B, [z] under the
mapping of the network onto (p,, p:); the orange area (p; > p,) indicates the region where the adversarial variants are misclassified, or
to say a successful attack, while the blue area (p; < p,) indicates the region where the adversarial variants do not attack successfully.
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Minimum-Margin Attack

R. Gao, et al., ICML’22

Sequential TArget Ranking Selection (STATS)

1)Pre-selecting-Targets Strategy:

Selecting partial targets achieves
comparable performance.

2)Ranking-Sequential-Attack Strategy:

Consider the false target with the highest
predicted probability first; if the attack
succeeds, then terminate attacks on other
targets; otherwise, continue considering
the false target with the second highest
predicted probability.
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Minimum-Margin Attack

R. Gao, et al., ICML’22

With the mentioned strategies, we summarize our scheme of
MM attack.

Condition 2 and Condition 3 follow the setting of the adaptive
step size selection in [1]:

w;—1

Condition 2. Z 111'(:i,3+1)>f(,[;;) < pB- (-wj — ’Ufj_l).
f:’tl.’j -

Condition 3. a"7~! = "% and fi-1 = fii .

Reference:
[1]:Croce, F. and Hein, M. Reliable evaluation of adversarial robustness with an
ensemble of diverse parameter-free attacks. In ICML, 2020.

Algorithm 1 MM Attack

1: Input: natural data x, true label g, set of false labels C', model

10:
1%
12;
13:
14:
15:
16:
17:
18:
19:
20:
41
2k
23:

NROD SNay Bk W R

[ loss function €77, maximum number of PGD steps N,
perturbation bound e, initial step size «, the number of classes
K, targets selection number K, checkpoints set 11;
Output: adversarial data z';

while K > 0do

Tl — T
—
f'mu.r = f(l‘{]),
¢ = argmax;co f(x),;
fork =0to N — 1 do
Thy1 + g, ) (T + asign(Va € (f(2h), ¥, c)):
if f(2}41) > fmae then
Tlm,a,.r e 71";\:4—1:
Jmaz + .f(-?f;.:-xfl);
end if
if & € W and (Condition 2 or Condition 3) then
a— af2;
Thil ¢ Tmazs
end if
end for
C « C\{c}h;
if arg max; . f(z'), # y then
K, « 0
end if
K.+ K;—1,

24: end while
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Experiments R. Gao, et al., ICML’22

Baselines:

*  PGD: Projected Gradient Descent Attack [1]

* CW: Carlini and Wagner attack [2]

* A-DLR: PGD with adaptive step size and DLR loss [3]
* A-CE: PGD with adaptive step size and CE loss [3]

*  FAB: A component of the AutoAttack ensemble [3]

e Square: A component of the AutoAttack ensemble [3]

* AA: AutoAttack with untargeted version [3]

* T-AA: AutoAttack with targeted version [3]

Reference:

[1]:Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep learning models resistant toadversarial attacks. In ICLR, 2018.
[2]:Carlini, N. and Wagner, D. Towards evaluating the robustness of neural networks. In CVPR, 2017.
[3]:Croce, F. and Hein, M. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In ICML, 2020.
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Experiments

R. Gao, et al., ICML’22
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EXpel‘imentS R. Gao, et al., ICML’22

Main results on different well-trained models provided in RobustBench.
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Experiments R. Gao, et al., ICML’22

Adversarial Training with MM Attack.
Main results on CIFAR-10

Methods | PGD Diff. | cw DIff. | MM3-F10 DIff. | MM3-F20 DIff. | MM3 Diff.
PGD (Test) | 51.14 410 | 51.47 377 ‘ 54.96 -0.28 | 55.24 0.00 | 55.04 2020
CW (Test) | 49.95 -1.89 | 53.26 0.00 | 51.18 2,08 | 51.16 2.10 | 51.84 142
A-CE (Test) | 48.58 3.92 | 48.16 434 | 51.55 -0.95 ‘ 52.50 0.00 | 5222 0.28

A-DLR (Test) | 4885 -1.44 | 52.76 0.00 | 49.78 2,98 | 49.88 288 | 50.29 247
FAB (Test) ‘ 47.28 12 ‘ 47.13 137 ‘ 47.83 0.67 | 4828 0.22 ‘ 48.50 -0.00
Square (Test) ‘ 54.46 20,66 | 55.32 0.00 | 54.80 -0.52 | 54.83 -0.49 ‘ 55.12 2020

AA (Test) | 46.43 185 | 46,36 192 | 47.62 0.66 | 47.84 -0.44 | 48.28 -0.00
T-AA (Test) | 46.12 0.97 ‘ 45.26 -1.83 | 46.39 0.70 | 4673 0.36 | 47.09 -0.00
MM3 (Test) | 46.69 117 ‘ 46.77 -1.09 | 47.20 -0.66 | 47.48 -0.38 | 47.86 -0.00
MMO (Test) ‘ 46.21 -0.95 ‘ 45.36 -1.80 ‘ 46.49 0.67 | 46.82 -0.34 ‘ 47.16 20,00
MM+ (Test) | 46.12 -0.90 | 45.22 180 | 4639 063 | 4668 034 | 47.02 -0.00
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