Training Discrete Deep Generative Models via Gapped Straight-Through Estimator

Ting-Han Fan^{*1} , $\mathsf{Ta}\text{-}\mathsf{Chung}\ \mathsf{Chi}^{*2}$, $\mathsf{Alexander}\ \mathsf{I}$. $\mathsf{Rudnicky}^2$, $\mathsf{Peter}\ \mathsf{J}$. $\mathsf{Ramadge}^1$

Princeton University, ² Carnegie Mellon University * Equal Contribution

ICML | 2022

Training Discrete Deep Generative Models

Neural network model for a discrete r.v. D:

$$\mathbb{P}(\mathbf{D} = e_i) = [p_{\theta}]_i, \qquad p_{\theta} = \mathsf{Softmax}_1(\mathsf{logit}_{\theta}).$$

- \triangleright θ : trainable parameters.
- e_i: one-hot vector with 1 at the ith entry.
- Objective:

$$\min_{\theta} \mathbb{E}_{{m D} \sim p_{\theta}}[g({m D})], \qquad g : \text{loss function}.$$

▶ If **D** admits a reparameterization model $D(\theta, \xi)$, update θ by:

$$\nabla_{\theta} g(D(\theta, \xi)), \quad \xi : \text{random source.}$$

- Appear in many scenarios:
 - VAE, GAN, Natural Language Processing, Reinforcement Learning

How to reparameterize discrete random variables?

The Family of Gumbel-Softmax Estimators

Gumbel-Softmax and its Straight-Through Variant¹:

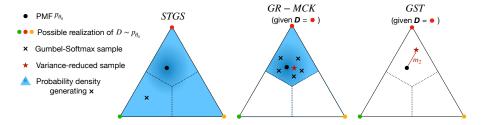
$$\begin{split} &D_{\text{GS}}(\boldsymbol{\theta}, \boldsymbol{\xi}) = \text{Softmax}_{\tau}(\text{logit}_{\boldsymbol{\theta}} + \boldsymbol{G}) \\ &D_{\text{STGS}}(\boldsymbol{\theta}, \boldsymbol{\xi}) = D(\boldsymbol{\theta}_0, \boldsymbol{\xi}) - D_{\text{GS}}(\boldsymbol{\theta}_0, \boldsymbol{\xi}) + D_{\text{GS}}(\boldsymbol{\theta}, \boldsymbol{\xi}) \end{split}$$

- ightharpoonup G: Gumbel(0,1) random vector
- lacktriangledown $heta_0 = \operatorname{stop_grad}(\theta)$ is the NN parameter during forward pass.
- $ightharpoonup D(heta_0, oldsymbol{\xi}) = \mathsf{sample_onehot_from}(p_{ heta_0}); \ p_{ heta_0} = \mathsf{Softmax}_1(\mathsf{logit}_{ heta_0})$
- GR-MCK: Variance reduction of STGS by conditioning and averaging.²
- GST: We improve upon the STGS paradigm and propose a method to reduce variance without resampling.

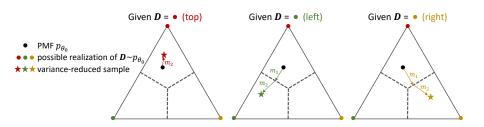
¹Jang, Gu, and Poole, "Categorical Reparameterization with Gumbel-Softmax". 2017

²Paulus, Maddison, and Krause, "Rao-Blackwellizing the Straight-Through Gumbel-Softmax Gradient Estimator". <u>₹</u>2021 ⊃ ҷ ⊘

Illustration of Estimators



Inner Workings of Gapped Straight-Through



- m_1 ensures the sampled category of D is the largest.
- m_2 further ensures the margin of difference.
- Made possible by the three observations and proofs detailed in the paper.

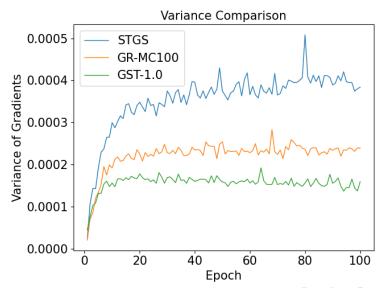
Gapped Straight-Through: Algorithm

- **1** Sample a $\mathbf{D} = D(\theta_0, \boldsymbol{\xi}) \sim p_{\theta_0}$.
- Construct perturbation functions

$$egin{aligned} m_1(heta_0, m{D}) &= \left(\max_{1 \leq j \leq N} \ [\mathsf{logit}_{ heta_0}]_j - \langle \mathsf{logit}_{ heta_0}, m{D}
angle
ight) \cdot m{D} \ m_2(heta_0, m{D}, g) &= \left(\mathsf{logit}_{ heta_0} + g - \max_{1 \leq j \leq N} \ [\mathsf{logit}_{ heta_0}]_j
ight)_+ \cdot (1 - m{D}) \end{aligned}$$

- ▶ $g \ge 0$: the gap parameter. Can be set as $g \approx 1$.
- **1** If hard sample, return D stop_gradient $(h(\theta, D)) + h(\theta, D)$.
- **5** If soft sample, return $h(\theta, \mathbf{D})$.

Empirical Verification of Variance on MNIST-VAE



Experiments on MNIST-VAE and ListOps

Temp.	Estimator	Neg. ELBO	Std.	Temp.	Estimator	Acc.	Std.
1.0	STGS	122.96	3.08	1.0	STGS	0.659	0.006
	GR-MC100	120.65	2.95		GR-MC100	0.651	0.009
	GST-1.0	113.63	1.48		GST-1.0	0.662	0.005
	GST-1.2	112.58	1.11		GST-1.2	0.660	0.011
0.5	STGS	118.96	2.51	0.1	STGS	0.645	0.014
	GR-MC100	117.88	3.01		GR-MC100	0.637	0.049
	GST-1.0	108.43	1.08		GST-1.0	0.664	0.012
	GST-1.2	107.33	0.69		GST-1.2	0.660	0.018

Table: MNIST-VAE (left, 10 seeds) and ListOps³ (right, 5 seeds).

Conclusion

- We propose GST, a low variance gradient estimator for discrete random variables in a neural network.
- Experiment results demonstrate reduced gradient variance and improved task performance.
- Code released at: https://github.com/chijames/GST

