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Training Discrete Deep Generative Models

Neural network model for a discrete r.v. D:

P(D = ei ) = [pθ]i , pθ = Softmax1(logitθ).

▶ θ: trainable parameters.
▶ ei : one-hot vector with 1 at the ith entry.

Objective:
min
θ

ED∼pθ [g(D)], g : loss function.

▶ If D admits a reparameterization model D(θ, ξ), update θ by:

∇θg(D(θ, ξ)), ξ : random source.

Appear in many scenarios:
▶ VAE, GAN, Natural Language Processing, Reinforcement Learning

How to reparameterize discrete random variables?
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The Family of Gumbel-Softmax Estimators

Gumbel-Softmax and its Straight-Through Variant1:

DGS(θ, ξ) = Softmaxτ (logitθ + G )

DSTGS(θ, ξ) = D(θ0, ξ)− DGS(θ0, ξ) + DGS(θ, ξ)

▶ G : Gumbel(0,1) random vector
▶ θ0 = stop grad(θ) is the NN parameter during forward pass.
▶ D(θ0, ξ) = sample onehot from(pθ0); pθ0 = Softmax1(logitθ0)

GR-MCK: Variance reduction of STGS by conditioning and
averaging.2

GST: We improve upon the STGS paradigm and propose a method to
reduce variance without resampling.

1
Jang, Gu, and Poole, “Categorical Reparameterization with Gumbel-Softmax”. 2017

2
Paulus, Maddison, and Krause, “Rao-Blackwellizing the Straight-Through Gumbel-Softmax Gradient Estimator”. 2021
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Illustration of Estimators
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Inner Workings of Gapped Straight-Through

PMF 𝑝𝜃0
possible realization of 𝑫~𝑝𝜃0
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m1 ensures the sampled category of D is the largest.

m2 further ensures the margin of difference.

Made possible by the three observations and proofs detailed in the
paper.
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Gapped Straight-Through: Algorithm

1 Sample a D = D(θ0, ξ) ∼ pθ0 .

2 Construct perturbation functions

m1(θ0,D) =

(
max

1≤j≤N
[logitθ0 ]j − ⟨logitθ0 ,D⟩

)
· D

m2(θ0,D, g) =

(
logitθ0 + g − max

1≤j≤N
[logitθ0 ]j

)
+

· (1− D)

▶ g ≥ 0: the gap parameter. Can be set as g ≈ 1.

3 h(θ,D) = Softmaxτ (logitθ +m1 −m2).

4 If hard sample, return D - stop gradient(h(θ,D)) + h(θ,D).

5 If soft sample, return h(θ,D).
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Empirical Verification of Variance on MNIST-VAE

7/ 9



Experiments on MNIST-VAE and ListOps

Temp. Estimator Neg. ELBO Std.

1.0

STGS 122.96 3.08
GR-MC100 120.65 2.95
GST-1.0 113.63 1.48
GST-1.2 112.58 1.11

0.5

STGS 118.96 2.51
GR-MC100 117.88 3.01
GST-1.0 108.43 1.08
GST-1.2 107.33 0.69

Temp. Estimator Acc. Std.

1.0

STGS 0.659 0.006
GR-MC100 0.651 0.009
GST-1.0 0.662 0.005
GST-1.2 0.660 0.011

0.1

STGS 0.645 0.014
GR-MC100 0.637 0.049
GST-1.0 0.664 0.012
GST-1.2 0.660 0.018

Table: MNIST-VAE (left, 10 seeds) and ListOps3 (right, 5 seeds).

3
Nangia and Bowman, “Listops: A diagnostic dataset for latent tree learning”. 2018
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Conclusion

We propose GST, a low variance gradient estimator for discrete
random variables in a neural network.

Experiment results demonstrate reduced gradient variance and
improved task performance.

Code released at: https://github.com/chijames/GST
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