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Training Discrete Deep Generative Models

@ Neural network model for a discrete r.v. D:

P(D = e;) = [poli,  po = Softmax; (logity).

» @: trainable parameters.
P> ¢;: one-hot vector with 1 at the ith entry.

@ Objective:
mein Ep~p,[g(D)], g :loss function.
» If D admits a reparameterization model D(6, &), update 6 by:

Vog(D(0,€)), & :random source.

@ Appear in many scenarios:
> VAE, GAN, Natural Language Processing, Reinforcement Learning

How to reparameterize discrete random variables?
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The Family of Gumbel-Softmax Estimators

o Gumbel-Softmax and its Straight-Through Variant!:

Dcgs(8, &) = Softmax,(logity + G)
Dstas(0,&) = D(6o, &) — Dags(6o, &) + Das(, €)

» G: Gumbel(0,1) random vector
> 0y = stop_grad(f) is the NN parameter during forward pass.
» D(6o,§) = sample_onehot_from(py,); pg, = Softmaxy (logity,)

@ GR-MCK: Variance reduction of STGS by conditioning and
averaging.?

@ GST: We improve upon the STGS paradigm and propose a method to
reduce variance without resampling.

lJang, Gu, and Poole, “Categorical Reparameterization with Gumbel-Softmax". 2017

2Pau|us, Maddison, and Krause, “Rao-Blackwellizing the Straight-Through Gumbel-Softmax Gradient Estimator” 2021
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[[lustration of Estimators
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Inner Workings of Gapped Straight-Through

Given D = o (top) Given D = o (left) Given D = o (right)

® PMFpy,
® o o possible realization of D~pg,
% % variance-reduced sample

@ mj ensures the sampled category of D is the largest.
@ my further ensures the margin of difference.

@ Made possible by the three observations and proofs detailed in the
paper.
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Gapped Straight-Through: Algorithm

@ Sample a D = D(6, &) ~ pg,.

@ Construct perturbation functions
m1 (6o, D) = <12_a<xN [logity,]; — (logitg,, D>> -D

my(6o, D, g) = <|0giteo +e— max [logiteOL')+ -(1-D)
» g > 0: the gap parameter. Can be set as g =~ 1.
@ h(6, D) = Softmax,(logity + m; — my).
© If hard sample, return D - stop_gradient(h(6, D)) + h(6, D).

@ If soft sample, return h(6, D).
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Empirical Verification of Variance on MNIST-VAE
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-
Experiments on MNIST-VAE and ListOps

Temp. Estimator Neg. ELBO  Std. Temp. Estimator Acc. Std.

STGS 122.96 3.08 STGS 0.659 0.006

1.0 GR-MC100 120.65 2.95 1.0 GR-MC100 | 0.651 0.009

' GST-1.0 113.63 1.48 ' GST-1.0 0.662 0.005
GST-1.2 112.58 1.11 GST-1.2 0.660 0.011

STGS 118.96 251 STGS 0.645 0.014

05 GR-MC100 117.88 3.01 01 GR-MC100 | 0.637 0.049

’ GST-1.0 108.43 1.08 ' GST-1.0 0.664 0.012
GST-1.2 107.33 0.69 GST-1.2 0.660 0.018

Table: MNIST-VAE (left, 10 seeds) and ListOps® (right, 5 seeds).
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3Nangia and Bowman, “Listops: A diagnostic dataset for latent tree learning”. 2018



Conclusion

@ We propose GST, a low variance gradient estimator for discrete
random variables in a neural network.

@ Experiment results demonstrate reduced gradient variance and
improved task performance.

@ Code released at: https://github.com/chijames/GST


https://github.com/chijames/GST

