

Regret Minimization with Performative Feedback

Meena Jagadeesan University of California, Berkeley joint work with

Tijana Zrnic University of California, Berkeley

Celestine Mendler-Dünner Max Planck Institute for Intelligent Systems

ICML 2022

Static view of machine learning

Our contribution: Learning algorithms that perform well in the presence of feedback effects

Typical supervised learning: data Z = (X, Y) distributed according to a fixed distribution \mathcal{D}

Typical supervised learning: data Z = (X, Y) distributed according to a fixed distribution \mathcal{D}

Performative prediction: model induces a distribution shift in the data distribution.

- Each model f_{θ} induces possibly distinct distribution Z = (X, Y) over observations.
- We call $\mathcal{D}(\theta)$ the distribution map.

Typical supervised learning: data Z = (X, Y) distributed according to a fixed distribution \mathcal{D}

Performative prediction: model induces a distribution shift in the data distribution.

- Each model f_{θ} induces possibly distinct distribution Z = (X, Y) over observations.
- We call $\mathcal{D}(\theta)$ the distribution map.

Objective: minimize *performative risk*:

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \operatorname{PR}(\theta) \quad \operatorname{PR}(\theta) := \underset{Z \sim \mathcal{D}(\theta)}{\mathbb{E}} \ell(Z; \theta)$$

Typical supervised learning: data Z = (X, Y) distributed according to a fixed distribution \mathcal{D}

Performative prediction: model induces a distribution shift in the data distribution.

- Each model f_{θ} induces possibly distinct distribution Z = (X, Y) over observations.
- We call $\mathcal{D}(\theta)$ the distribution map.

Objective: minimize *performative risk*:

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \operatorname{PR}(\theta) \quad \operatorname{PR}(\theta) := \underset{Z \sim \mathcal{D}(\theta)}{\mathbb{E}} \ell(Z; \theta)$$

The dependence on the model appears **twice**. $\mathcal{D}(\theta)$ is **unknown**.

Our contributions

Approach: Gain information about distribution shifts through repeated model deployments

Our contributions

Approach: Gain information about distribution shifts through repeated model deployments

1. We establish a connection between performative prediction and bandits.

Optimization in performative prediction \approx bandit problem with richer feedback

- 2. Under smoothness assumptions, we design an algorithm whose regret scales with the complexity of the distribution map and *not* with the complexity of the performative risk.
- 3. We extend our results to linear distribution maps.

Performative optimization as online learning

- The learner needs to deploy different θ to explore the induced distributions $\mathcal{D}(\theta)$
- Natural to evaluate online sequence of deployments θ_1,\ldots,θ_T via performative regret:

$$\operatorname{Reg}(T) = \sum_{t=1}^{T} \left(\mathbb{E}\operatorname{PR}(\theta_t) - \operatorname{PR}(\theta^*) \right) \quad \theta^* = \underset{\theta}{\operatorname{argmin}} \operatorname{PR}(\theta)$$

Performative optimization as online learning

- The learner needs to deploy different θ to explore the induced distributions $\mathcal{D}(\theta)$
- Natural to evaluate online sequence of deployments $\theta_1, \dots, \theta_T$ via performative regret:

$$\operatorname{Reg}(T) = \sum_{t=1}^{T} \left(\mathbb{E}\operatorname{PR}(\theta_t) - \operatorname{PR}(\theta^*) \right) \quad \theta^* = \underset{\theta}{\operatorname{argmin}} \operatorname{PR}(\theta)$$

"Baseline" bandits approach: Pull "arm" $heta_t$ and observe reward $\hat{ ext{PR}}(heta_t)$.

Performative optimization as online learning

- The learner needs to deploy different θ to explore the induced distributions $\mathcal{D}(\theta)$
- Natural to evaluate online sequence of deployments $\theta_1, \dots, \theta_T$ via performative regret:

$$\operatorname{Reg}(T) = \sum_{t=1}^{T} \left(\mathbb{E}\operatorname{PR}(\theta_t) - \operatorname{PR}(\theta^*) \right) \quad \theta^* = \underset{\theta}{\operatorname{argmin}} \operatorname{PR}(\theta)$$

"Baseline" bandits approach: Pull "arm" $heta_t$ and observe reward $\hat{\mathrm{PR}}(heta_t)$.

Main insight: performative settings exhibit richer feedback than bandit feedback.

- We observe samples from $\mathcal{D}(\theta_t)$, not just bandit feedback about performative risk.
- Can find θ^* with less exploration than bandit baselines.

Key insight: tighter confidence bounds

confidence bounds with bandit feedback:

confidence bounds with performative feedback:

Conclusion and Future Work

- Deploying a model can induce a performative distribution shift on the population.
- Learner needs to deploy models online to find on with low induced risk
- Regret minimization with performative feedback pprox bandit problem with richer feedback
- Performative feedback requires less exploration to find a good solution.

Future work: Leverage bandit tools for performative prediction more generally.

Thank you.