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Problem statement

• How do we pinpoint the training 
examples that contribute 
significantly to a behavior?

• Behavior is usually quantified by 
some utility: 
• E.g., ! " = confidence score for a 

prediction

???

Model 
label: Car
confidence: 0.995Predict
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Why influence functions fall short?

• Influence function: measures the contribution of using marginal effect

•!Efficient: no model training needed assuming convexity
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Why influence functions fall short?

•!DNNs are not convex
•!Marginal effect is close to 0 regardless of the data point
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Why influence functions fall short?

•!DNNs are not convex
•!Marginal effect is close to 0 regardless of the data point

• Observation: marginal effect is prominent when removing 
from smaller subsets of the training set!

! − ! > 0
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• Sample various subsets, Average their Marginal Effects (AME)

!~{ … }



Average Marginal Effect (AME)

• Sample various subsets, Average their Marginal Effects (AME)

E" # $ + & − # $ , $~{ … }
Average their Marginal Effects (AME)



Average Marginal Effect (AME)

• Sample various subsets, Average their Marginal Effects (AME)

• Each subset is drawn by including each data point independently with 
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Average Marginal Effect (AME)

• Sample various subsets, Average their Marginal Effects (AME)

• Each subset is drawn by including each data point independently with 
probability ! ~ #

• Estimate via randomized experiments and LASSO regression

E% & ' + ) − & ' , '~{ … }
Average their Marginal Effects (AME)



Efficient Estimation of AME

!"
!#

…

!$

!%



Efficient Estimation of AME

!"
!#

…

!$

!%

Model

Model

Model

Model

…

Train



Efficient Estimation of AME

Design 
matrix 
!

"

Encode Utility

#$
#%

…

#&

#'

Model

Model

Model

Model

…

Train



Efficient Estimation of AME
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matrix 
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Efficient Estimation of AME

Regress(            ,        ) ⇒ AMEDesign 
matrix 
%

&

Encode Utility

• Sparsity assumption: a few (') data 
points have large contribution

• Scalable: train ((' log-) models where 
-: training set size
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Sampling Distribution ! for AME

• Subsets are drawn by including each data point independently with 
probability " ~ !
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• Subsets are drawn by including each data point independently with 
probability " ~ !

• ! = Uniform 0,1 , AME = SV, but incompatible with fast estimation
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Sampling Distribution ! for AME

• Subsets are drawn by including each data point independently with 
probability " ~ !

• ! = Uniform 0,1 , AME = SV, but incompatible with fast estimation
• Instead, ! = “discretized Uniform(0,1)”
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• We poisoned ! training data points, estimate the AMEs, and select
those with high AME
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Result in poison detection

• We poisoned ! training data points, estimate the AMEs, and select
those with high AME

More results in the paper
• Knockoffs to control false positives
• SV and influence function

better

Remains competitive 
when increasing !



Faster estimator for SV



Conclusion

• A new method useful for model debugging and poison detection, 
assuming sparsity
• Uses AME to measure effect of training data points
• Uses randomized experiments and LASSO to estimate AME efficiently
• Faster estimator for SV

• See our paper for more details, results and extensions:
• Hierarchical design: simultaneously identify sources (collections of data 

points) and individual data points with high AME

• Contact: jinkun.lin@nyu.edu; Poster: Hall E #936
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Conclusion

• A new method useful for model debugging and poison detection, 
assuming sparsity
• Uses AME to measure effect of training data points
• Uses randomized experiments and LASSO to estimate AME efficiently
• Faster estimator for SV

• See our paper for more details, results and extensions:
• Hierarchical design: simultaneously identify sources (collections of data 

points) and individual data points with high AME

• Contact: jinkun.lin@nyu.edu; Poster: Hall E #936

Thank you!
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