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Problem statement

* How do we pinpoint the training
examples that contribute
significantly to a behavior?

e Behavior is usually quantified by
some utility:

* E.g., U(-) = confidence score for a
prediction
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* Influence function: measures the contribution of % using marginal effect
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Influence Functions

* Influence function: measures the contribution of % using marginal effect
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Why influence functions fall short?

* Influence function: measures the contribution of » using marginal effect
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Why influence functions fall short?

* “"DNNs are not convex
* “"Marginal effect is close to 0 regardless of the data point




Why influence functions fall short?

 ““DNNs are not convex
* “"Marginal effect is close to 0 regardless of the data point

@ Observation: marginal effect is prominent when removing

from smaller subsets of the training set!




Average Marginal Effect (AME)

e Sample various subsets,
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« Sample various subsets, Average their Marginal Effects (AME)
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* Each subset is drawn by including each data point independently with
probability p ~ P
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Average Marginal Effect (AME)

« Sample various subsets, Average their Marginal Effects (AME)
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* Each subset is drawn by including each data point independently with
probability p ~ P

* Estimate via randomized experiments and LASSO regression



Efficient Estimation of AME
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Efficient Estimation of AME
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Efficient Estimation of AME
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* Scalable: train O(k log N) models where
N: training set size
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Sampling Distribution P for AME
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* P = Uniform(0,1), AME = SV, but incompatible with fast estimation



Sampling Distribution P for AME

Es[U(S + {i}) — U], S~{(E) 5 |[Ex)F o] -3

e Subsets are drawn by including each data point independently with
probability p ~ P
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* P = Uniform(0,1), AME = SV, but incompatible with fast estimation
* Instead, P = “discretized Uniform(0,1)”



Successfully Detects Poisoned Training Data

* We poisoned k training data points, estimate the AMEs, and select
those with high AME
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Successfully Detects Poisoned Training Data

* We poisoned k training data points, estimate the AMEs, and select
those with high AME
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Result in poison detection

* We poisoned k training data points, estimate the AMEs, and select
those with high AME
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Result in poison detection

* We poisoned k training data points, estimate the AMEs, and select
those with high AME
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Faster estimator for SV
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Conclusion

* A new method useful for model debugging and poison detection,
assuming sparsity
* Uses AME to measure effect of training data points
* Uses randomized experiments and LASSO to estimate AME efficiently
* Faster estimator for SV
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* See our paper for more details, results and extensions:

* Hierarchical design: simultaneously identify sources (collections of data
points) and individual data points with high AME
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