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Diversity in informative features makes the prediction challenging
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LSPIN Accurately recovers informative features

We generate data from P(x; =1) = P(x; = —-1)=0.5,j =1,...,20
T X T2 + 2(1321, if ro1 = —1,
E5: y = ®g X T3 + 2x91, if o1 =0,
T3 X T4 + 2wy, if xyy = 1.
El E2 E3 E4 E5
FI | ACC | FI | ACC | FL | ACC || FL | ACC || FL | MSE
LASSO 0.5000 | 52.00 | 0.5000 | 7450 | 0.6250 | 71.50 || 0.1290 | 64.00 || 0.3704 | 1.0190
sve 0.4444 | 51.50 | 0.5000 | 74.50 || 0.6667 | 71.50 || 0.2353 | 68.00 || NA | NA
RF 0.5333 | 88.50 | 0.5333 | 88.50 | 0.6250 | 87.00 | 0.0769 | 86.00 || 0.2500 | 0.2499
XGBoost || 05333 | 93.00 || 0.5333 | 95.00 || 0.6250 | 86.50 | 0.0769 | 96.00 || 0.2500 | 0.0118
MLP NA | 7800 | NA |8850 | NA |8450 | NA |64.00| NA | 0.6526
Linear STG || 0.4000 | 55.50 || 0.4000 | 76.00 || 0.3750 | 69.00 | 0.6667 | 70.00 || 0.5000 | 1.0067
Nonlinear STG || 0.7272 | 84.50 | 0.7272 | 90.00 | 0.7143 | 86.00 | 0.6667 | 76.00 || 0.7500 | 0.0004
INVASE || 0.5300 | 89.00 | 0.7000 | 88.00 | 0.6923 | 86.00 | 0.6667 | 94.00 || 0.1526 | 3.1264
L2X 0.7986 | 88.00 | 0.6050 | 94.50 | 0.2450 | 87.00 | 05000 | 92.00 || 0.6081 | 0.5134
TabNet 0.4789 | 54.50 | 0.5426 | 65.50 | 0.6905 | 78.50 || 0.0036 | 60.00 || 0.4454 | 1.0317
REALx | 0.8306 | 85.00 | 0.7080 | 88.50 | 0.7823 | 86.00 || 0.8511 | 90.00 | NA* | NA*
LLSPIN 0.3337 | 8050 | 0.7216 | 86.50 | 0.4741 | 73.50 | 0.9458 | 90.00 || 0.6815 | 0.4927
LSPIN 0.9761 | 94.00 || 0.8600 | 95.00 || 0.9296 | 89.00 || 0.9615 | 98.00 | 1 | 0.0019




LSPIN leads to intepretable results

We use the following metrics to evaluate interpretability
Stability Diversity _Faithfulness. Generalizability
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LSPIN leads to intepretable results

We use the following metrics to evaluate interpretability

Stability Diversity _Faithfulness Generalizability
gty
Pasion o ncluds featus (by iportance)
Using MNIST
Method ACC | # Feat | Stability | Diversity | Faithfulness | Gen-SVM | Gen-k-means
RF-SHAP 96.81 8 0418 | 4L15 0531 52.42 40.15
Deep-SHAP 97.86 8 0634 | 88.10 0.780 83.56 56.31
REAL-x 96.95 | 10 0415 | 80.55 0.885 94.04 87.94
L2X 89.11 8 0.268 | 94.79 0.791 94.18 89.56
INVASE 85.07 | 11 0162 | 13.43 0.864 69.67 43.02
TabNet 96.79 6 0265 | 89.17 0.759 54.42 43.22
LLSPIN (A, =0) | 98.26 7 0294 | 99.14 0.950 98.22 97.50
LLSPIN (A, = 0.1) | 98.18 6 0.098 | 99.05 0.926 96.23 06.84
LSPIN (\; = 0) 98.45 | 7 0.256 | 99.84 0.987 98.43 97.99
LSPIN (A, =0.1) | 98.29 6 0.065 | 99.39 0.917 98.42 97.57

Making the model intepretable by design improves all metrics
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LSPIN is highly predictive on real-world tabular data
Survival analysis on the SEER data
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Classification on low-sample-size (LSS) tabular data

BASEHOCK RELATHE PCMAC PBMC COLON TOX-171 Median Rank
LASSO 7446 £5.19 [34] 5860 £ 1.50 [18]  6R.00=4.08 [21]  90.30 = 0.36 [31] SL.54 £0.85 [24] &7.71 £ 4.62 [49] 65
sV 7446 £3.37 [22]  5648+3.00 (6]  67.41+3.72[12]  89.02+0.74 [30] 25] 81144747 [3§] 85
RF 64.46 =4.52 [10] 7142350 [50]  67.44+7.00 (9]  48.56 = 6.18 [10] ] 53.71+9.96 [42] 115
XGBoost | 90.37+1.05 [45]  76.75+1.67 [32]  83.93+0.67 [43]  76.58+0.72 [64] ] 67.43+5.60 [38] 6
MLP 56.51 + 1.43 55.44 £ 2.38 54.38 + 1.27 61.57 + 1.45 81.54 £ 7.84 62.59 + 8.03 12.5
Linear STG | 89.36=1.40 [27]  69.94+5.05 [16] 85.11+1.07 [42] 88.22+0.82 [27] 74.62+11.44 [14] TL14+578 [16] 7
Nonlinear STG | 89.24 % 1.18 [20] ~ 74.83+£3.95 [27]  84.16£0.90 [32]  86.20 % 1.31 [19]  76.15+13.95 [8]  67.43+7.25 [14] 65
INVASE 84.02+0.81 [42]  70.81+£1.56 [43]  77.06+1.01 [48]  86.34=0.81 [30]  76.92+£12.40 (6]  76.86 = 7.39[26] 7.5
L2X 8848 £2.01 [1]  77.10+5.19 [10]  78.69+£3.62 [10] 70.77+11.24 [10] 7846 +8.28 [§] 7171+ 10.42[9] 65
TabNet 88.21£2.00 [3]  67.84£1540 [10]  69.35+10.49 [4]  92.13£0.59 [3] 64.62 4+ 12.02 [28]  30.00 = 6.29 [34] 9.5
REAL-x 80.80£1.96 (5]  80.61+1.31 [3] 80.98£3.05 (6]  83.30+2.10 [24] 7538+ 1278 [15] 77.71+7.65 [42] 5
LSPIN 89.37+1.48 [3]  80.59 + 1.95 [3] 7851+ 1.48 [3]  88.67+0.64 [15] 7154 +6.92[1]  90.20 + 5.45[1] 4.5
LLSPIN 91.56 £1.51 [4] 82.01+£2.20 [11] 8148174 (3]  90.43=0.6[18) 83.85+5.38 [7] 92.57 +6.41 [6] 1




Thank You!

Code: https://github.com/jcyang34/Ispin
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