

Flow-Guided Sparse Transformer for Video Deblurring

ICML 2022

Jing Lin^{*1}, Yuanhao Cai^{*1}, Xiaowan Hu¹, Haoqian Wang^{†1}, Youliang Yan² Xueyi Zou^{†2}, Henghui Ding³, Yulun Zhang³, Radu Timofte³, and Luc Van Gool³ The Shenzhen International Graduate School, Tsinghua University¹ Huawei Noah's Ark Lab², ETH Zürich³

Outline

- Background and Motivation
- The Proposed Flow-Guided Sparse Transformer
 - FGST: Overall framework
 - FGS-MSA
 - FGSW-MSA
 - RE
- Experiment Results

Video Deblurring

Sharp Video Degrade Restore Restore Hand-held Camera Object Tracking Autonomous Driving

Existing Methods

- Conventional Methods: Based on hand-crafted prior, poor generalization ability, and limited representation capacity
- CNN-based Methods: Show limitations in capturing longrange dependencies and non-local self-similarity

Transformer?

Transformer

- Global Transformer: non-trivial computation cost
- Local Transformer: local receptive field, may miss some content-related tokens when fast motion exists

Previous Transformers lack the guidance of motion information when computing self-attention

Integrate optical flow into self-attention module

Framework

Flow-Guided Sparse Transformer

- The first Transformer-based method for video deblurring
- Adopts a U-shaped structure consisting of an encoder, a bottleneck, and a decoder
- Built up by Flow-Guided Attention Blocks (FGABs)

FGST

FGS-MSA

FGS-MSA

Flow-Guided Sparse Multi-head Self-Attention

Optical Flow Estimation

$$(\Delta x_f, \Delta y_f) = F_o(\boldsymbol{v}_t, \boldsymbol{v}_f) (i, j)$$

• Key Elements Sampling

$$oldsymbol{\Omega}_{i,j}^t = \{oldsymbol{k}_{i+\Delta x_f,j+\Delta y_f}^f \mid |f-t| \leq r\}_t$$

• Self-Attention Calculation

$$\text{FGS-MSA}(\boldsymbol{q}_{i,j}^t, \boldsymbol{\Omega}_{i,j}^t) = \sum_{n=1}^N \mathbf{W}_n \sum_{\boldsymbol{k} \in \boldsymbol{\Omega}_{i,j}^t} \mathbf{A}_{n\boldsymbol{q}_{i,j}^t\boldsymbol{k}} \; \mathbf{W'}_n \; \boldsymbol{k},$$

Enjoy global receptive fields and linear computation complexity

$$O(\text{global MSA}) = 4(THW)C^2 + 2(THW)^2C,$$

 $O(\text{FGS-MSA}) = 2(THW)C(2(r+1)C + 2r + 1).$

Improvements

FGSW-MSA

• FGSW-MSA: more robust to accommodate pixellevel flow offset prediction deviations

• RE: Inspired by RNN, to establish longrange temporal dependencies

Experiment

Method	EDVR	Tao <i>et al</i> .	Su et al.	DBLRNet	STFAN	Xiang et al.	TSP	Suin et al.	ARVo	FGST
	(Wang et al. 2019)	(Tao et al. 2018)	(Su et al. 2017)	(Zhang et al. 2018)	(Zhou et al. 2019)	(Xiang et al. 2020)	(Pan et al. 2020)	(Suin et al. 2021)	(Li et al. 2021)	(Ours)
PSNR ↑	28.51	29.98	30.01	30.08	31.15	31.68	32.13	32.53	32.80	33.36
SSIM ↑	0.864	0.884	0.888	0.885	0.905	0.916	0.927	0.947	0.935	0.950

Tab. 1 Quantitative Comparison with SOTA methods on DVD dataset.

Method	RDN	Kim et al.	EDVR	Su et al.	STFAN	Nah et al.	Tao et al.	TSP	Suin et al.	FGST
	(Patrick et al. 2017)			, , ,		,		,		
PSNR ↑	25.19	26.82	26.83	27.31	28.59	29.97	30.29	31.67	32.10	32.90
SSIM ↑	0.779	0.825	0.843	0.826	0.861	0.895	0.901	0.928	0.960	0.961

Tab. 2 Quantitative Comparison with SOTA methods on GOPRO dataset.

Fig. 1 Qualitative Comparison with SOTA methods.

Our FGST significantly outperforms SOTA methods quantitively and qualitatively.

Thanks

Code & Paper