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Video Deblurring

• Conventional Methods: Based on hand-crafted prior, poor 
generalization ability, and limited representation capacity

• CNN-based Methods: Show limitations in capturing long-
range dependencies and non-local self-similarity
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Previous Transformers lack the guidance of motion 
information when computing self-attention

Integrate optical flow into self-attention module

Transformer

• Global Transformer: non-trivial computation cost

• Local Transformer: local receptive field, may miss 
some content-related tokens when fast motion exists
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Flow-Guided Sparse Transformer

• The first Transformer-based method for 
video deblurring

• Adopts a U-shaped structure consisting of
an encoder, a bottleneck, and a decoder

• Built up by Flow-Guided Attention Blocks 
(FGABs)
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Flow-Guided Sparse Multi-head Self-Attention

which is composed of two FGABs and patch expanding lay-210

ers. The patch expanding layer is a strided 2⇥2 deconvolu-211

tion that upsamples the feature maps. To alleviate the infor-212

mation loss caused by downsampling, skip connections are213

used for feature fusion between the encoder and decoder.214

After undergoing the decoder, the feature maps pass215

through 5 Residual Blocks to generate a residual frame se-216

quence R 2 RT⇥3⇥H⇥W . Finally, the deblurred video217

V0 2 RT⇥3⇥H⇥W can be derived by V0 = V +R.218

Flow-Guided Attention Block219

There are two main issues to directly use Transformer for220

video deblurring. Firstly, the original global Transformer221

computes self-attention globally between all tokens, which222

leads to over-smooth results and quadratic resource cost with223

respect to the number of tokens. Additionally, as analyzed in224

(Zhu et al. 2020) , too many key elements may easily cause225

the non-convergence issue during training. Secondly, when226

using window-based local Transformer, the self-attention is227

calculated within position-specific local windows, leading to228

limited receptive fields. As a result, local Transformer also229

shows limitations in modeling long-range dependencies. Be-230

sides, it may easily miss some key elements of similar and231

sharper scene patches in the spatio-temporal neighborhood232

because these key elements shifted by fast motions may be233

outside of the position-specific windows. We summarize the234

main reason for these issues, i.e., original Transformers lack235

the guidance of motion information to retrieve highly related236

but misaligned tokens while calculating the self-attention.237

To address the problems, we propose to use optical flow as238

the guidance to retrieve key elements from spatio-temporal239

neighborhoods when calculating the self-attention. Based240

on this motivation, we customize the basic unit, FGAB as241

shown in Fig. 2 (b). FGAB consists of a Layer Normal-242

ization (LN), a Flow-Guided Sparse Window-based Multi-243

head Self-Attention (FGSW-MSA), a Feed-Forward Net-244

work (FFN), and two identity mappings. The FFN is com-245

posed of 5 consecutive Residual Blocks. In this part, we first246

introduce Flow-Guided Sparse Multi-head Self-Attention247

(FGS-MSA) and then its improved version, FGSW-MSA.248

FGS-MSA. The details of FGS-MSA are illustrated in Fig. 1249

(a). Given the tth input blurry video frame vt 2 R3⇥H⇥W250

as the reference frame. qt

i,j
and kt

i,j
2 RC respectively de-251

note the query and key elements of the position (i,j) on the252

tth frame. FGS-MSA aims to model long-range dependen-253

cies and capture self-similarity of image priors. To this end,254

FGS-MSA produces keys from the key elements of similar255

and sharper scene patches in the spatio-temporal neighbor-256

hood of vt. It is guided by the motion information that is257

predicted by an optical flow estimator. This set of key ele-258

ments is corresponding to qt

i,j
and we denote it as⌦t

i,j
, i.e.,259

260

⌦t
i,j = {kf

i+�xf ,j+�yf

�� |f � t|  r}, (1)

where r represents the temporal radius of the neighboring261

frames. (�xf ,�yf ) denotes the value at position (i, j) of262

the estimated motion offset map, which is predicted from263

the reference frame vt to the neighboring frame vf :264

(�xf ,�yf ) = Fo(vt,vf ) (i, j), (2)

where Fo denotes the mapping function of the optical flow 265

estimator. Subsequently, FGS-MSA can be formulated as: 266

FGS-MSA(qt
i,j ,⌦

t
i,j) =

NX

n=1

Wn

X

k2⌦t

i,j

Anqt

i,j
k W0

n k, (3)

where N is the number of the attention heads. Wn 2 RC⇥d 267

and W0
n 2 Rd⇥C are learnable parameters, where d is the 268

representation dimension per head and d = C

N
. Anqt

i,j
k is 269

the nth head self-attention. It can be formulated as: 270

Anqt

i,j
k = softmax

k2⌦t

i,j

(
(qt

i,j
)TUT

n
Vnkp

d
), (4)

where Un and Vn 2 Rd⇥C are learnable parameters. Given 271

an input video V 2 RT⇥3⇥H⇥W , the original global MSA 272

leads to quadratic ((THW )2) computational complexity 273

while FGS-MSA contributes to linear computation cost with 274

respect to the token number (THW ). More specifically, the 275

computation cost of original global MSA and FGS-MSA are 276
277

O(global MSA) = 4(THW )C2 + 2(THW )2C,

O(FGS-MSA) = 2(THW )C
�
2(r + 1)C + 2r + 1

�
. (5)

278FGSW-MSA. For each neighboring frame, FGS-MSA only 279

attends to a single key element. When the optical flow 280

estimation is inaccurate, the deblurring performance may 281

degrade. To further improve the robustness and reliabil- 282

ity of our method, we promote FGS-MSA to Flow-Guided 283

Sparse Window-based Multi-head Self-Attention (FGSW- 284

MSA). As shown in Fig. 1 (b), we split the neighboring fea- 285

ture maps into non-overlapping windows. The size of each 286

window is M ⇥M . �t

i,j
denotes the set of query elements 287

in the window centering at position (i, j) of the tth frame: 288

�t
i,j = {qt

m,n

�� |m� i|  M/2, |n� j|  M/2}. (6)

For each qt

m,n
2 �t

i,j
, FGSW-MSA attends to not only its 289

corresponding key elements in ⌦t

m,n
(Eq. (1)) assigned by 290

flow offsets but also the key elements corresponding to other 291

query elements in �t

i,j
. We denote the set of these key ele- 292

ments as t

i,j
. It can be formulated as: 293

 t
i,j =

[
⌦t

m,n

|m�i|M/2, |n�j|M/2

. (7)

Instead of only attending to a single key element on each 294

neighboring frame for a single query, FGSW-MSA retrieves 295

key elements from similar and sharper patches correspond- 296

ing to all query elements from �t

i,j
. The attending region 297

is enlarged from a pixel to a window. Thus, FGSW-MSA 298

is more robust to accommodate pixel-level flow prediction 299

deviations. FGSW-MSA can be formulated as: 300

FGSW-MSA(�t
i,j , 

t
i,j) = {FGS-MSA(q, t

i,j)|q 2 �t
i,j}.

(8)
Given the input V, the computational complexity is 301

O(FGSW-MSA) = 2(THW )C
�
C + (2r + 1)(C +M2)

�
. (9)

The computational cost of FGSW-MSA is linear with re- 302

spect to the number of tokens (THW ). Eq. (5) and (9) reveal 303

the high efficiency and resource economy of our FGST. 304
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cies and capture self-similarity of image priors. To this end,254

FGS-MSA produces keys from the key elements of similar255

and sharper scene patches in the spatio-temporal neighbor-256

hood of vt. It is guided by the motion information that is257

predicted by an optical flow estimator. This set of key ele-258

ments is corresponding to qt

i,j
and we denote it as⌦t

i,j
, i.e.,259

260

⌦t
i,j = {kf

i+�xf ,j+�yf

�� |f � t|  r}, (1)

where r represents the temporal radius of the neighboring261

frames. (�xf ,�yf ) denotes the value at position (i, j) of262

the estimated motion offset map, which is predicted from263

the reference frame vt to the neighboring frame vf :264

(�xf ,�yf ) = Fo(vt,vf ) (i, j), (2)

where Fo denotes the mapping function of the optical flow 265

estimator. Subsequently, FGS-MSA can be formulated as: 266

FGS-MSA(qt
i,j ,⌦

t
i,j) =

NX

n=1

Wn

X

k2⌦t

i,j

Anqt

i,j
k W0

n k, (3)

where N is the number of the attention heads. Wn 2 RC⇥d 267

and W0
n 2 Rd⇥C are learnable parameters, where d is the 268

representation dimension per head and d = C

N
. Anqt

i,j
k is 269

the nth head self-attention. It can be formulated as: 270

Anqt

i,j
k = softmax

k2⌦t

i,j

(
(qt

i,j
)TUT

n
Vnkp

d
), (4)

where Un and Vn 2 Rd⇥C are learnable parameters. Given 271

an input video V 2 RT⇥3⇥H⇥W , the original global MSA 272

leads to quadratic ((THW )2) computational complexity 273

while FGS-MSA contributes to linear computation cost with 274

respect to the token number (THW ). More specifically, the 275

computation cost of original global MSA and FGS-MSA are 276
277

O(global MSA) = 4(THW )C2 + 2(THW )2C,

O(FGS-MSA) = 2(THW )C
�
2(r + 1)C + 2r + 1

�
. (5)

278FGSW-MSA. For each neighboring frame, FGS-MSA only 279

attends to a single key element. When the optical flow 280

estimation is inaccurate, the deblurring performance may 281

degrade. To further improve the robustness and reliabil- 282

ity of our method, we promote FGS-MSA to Flow-Guided 283

Sparse Window-based Multi-head Self-Attention (FGSW- 284

MSA). As shown in Fig. 1 (b), we split the neighboring fea- 285

ture maps into non-overlapping windows. The size of each 286

window is M ⇥M . �t

i,j
denotes the set of query elements 287

in the window centering at position (i, j) of the tth frame: 288

�t
i,j = {qt

m,n

�� |m� i|  M/2, |n� j|  M/2}. (6)

For each qt

m,n
2 �t

i,j
, FGSW-MSA attends to not only its 289

corresponding key elements in ⌦t

m,n
(Eq. (1)) assigned by 290

flow offsets but also the key elements corresponding to other 291

query elements in �t

i,j
. We denote the set of these key ele- 292

ments as t

i,j
. It can be formulated as: 293

 t
i,j =

[
⌦t

m,n

|m�i|M/2, |n�j|M/2

. (7)

Instead of only attending to a single key element on each 294

neighboring frame for a single query, FGSW-MSA retrieves 295

key elements from similar and sharper patches correspond- 296

ing to all query elements from �t

i,j
. The attending region 297

is enlarged from a pixel to a window. Thus, FGSW-MSA 298

is more robust to accommodate pixel-level flow prediction 299

deviations. FGSW-MSA can be formulated as: 300

FGSW-MSA(�t
i,j , 

t
i,j) = {FGS-MSA(q, t

i,j)|q 2 �t
i,j}.

(8)
Given the input V, the computational complexity is 301

O(FGSW-MSA) = 2(THW )C
�
C + (2r + 1)(C +M2)

�
. (9)

The computational cost of FGSW-MSA is linear with re- 302

spect to the number of tokens (THW ). Eq. (5) and (9) reveal 303

the high efficiency and resource economy of our FGST. 304
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Our FGST significantly outperforms SOTA methods quantitively and qualitatively.

Method EDVR Tao et al. Su et al. DBLRNet STFAN Xiang et al. TSP Suin et al. ARVo FGST
(Wang et al. 2019) (Tao et al. 2018) (Su et al. 2017) (Zhang et al. 2018) (Zhou et al. 2019) (Xiang et al. 2020) (Pan et al. 2020) (Suin et al. 2021) (Li et al. 2021) (Ours)

PSNR " 28.51 29.98 30.01 30.08 31.15 31.68 32.13 32.53 32.80 33.36
SSIM " 0.864 0.884 0.888 0.885 0.905 0.916 0.927 0.947 0.935 0.950

Table 1: Video deblurring results compared with other methods on the DVD benchmark (Su et al. 2017). FGST achieves SOTA results.

Method RDN Kim et al. EDVR Su et al. STFAN Nah et al. Tao et al. TSP Suin et al. FGST
(Patrick et al. 2017) (Kim et al. 2015) (Wang et al. 2019) (Su et al. 2017) (Zhou et al. 2019) (Nah et al. 2019) (Tao et al. 2018) (Pan et al. 2020) (Suin et al. 2021) (Ours)

PSNR " 25.19 26.82 26.83 27.31 28.59 29.97 30.29 31.67 32.10 32.90
SSIM " 0.779 0.825 0.843 0.826 0.861 0.895 0.901 0.928 0.960 0.961

Table 2: Video deblurring results compared with other methods on the GOPRO dataset (Nah et al. 2017). FGST achieves SOTA results.

Blurry
29.68 / 0.914

STFAN
31.05 / 0.927

EDVR
31.81 / 0.952

Nah et al.
33.39 / 0.954

SRN
33.82 / 0.955

TSP
34.45 / 0.961

FGST (Ours)
35.93 / 0.969

Ground-Truth
PSNR / SSIM

Figure 3: Visual comparisons between our FGST and SOTA methods on GOPRO dataset (Nah et al. 2017). Please zoom in for a better view.

Discussion. Please note that FGST also belongs to the global305

Transformer. However, compared to original global and lo-306

cal Transformers, FGST neither attends to redundant key el-307

ements nor suffers from limited receptive fields of position-308

specific windows. Instead, FGST enjoys the guidance of mo-309

tion information and globally retrieves sparse yet highly re-310

lated tokens that are misaligned in the neighboring frames.311

On the other hand, unlike previous flow-based methods312

that sacrifice detailed contents while warping the neighbor-313

ing frames, FGST combines motion cues with self-attention314

calculation. Thus, the image prior information can be pre-315

served. This also leads to higher flexibility and robustness316

because adjacent FGABs sample contents independently.317

Please refer to the supplementary for detailed discussions.318

319 Recurrent Embedding320

When designing FGSW-MSA, we only attend to neighbor-321

ing frames within a local short temporal sequence due to322

the limitation of computational complexity. To further cap-323

ture more robust long-range temporal dependencies, we pro-324

pose Recurrent Embedding (RE). RE is motivated by Recur-325

rent Neural Network (RNN). More specifically, as shown in326

Fig. 2 (c), we exploit RE in each FGAB to aggregate the out-327

put of the last frame and the input of the current frame. Some328

intermediate steps between FGABs are omitted for simplic-329

ity. Because RE preserves the information of all frames in a330

long temporal sequence and keeps updating, FGAB is capa-331

ble of modeling the long-range temporal correlations. xl

t
, yl

t
,332

e
l

t
respectively denote the input, output, and RE of the lth333

FGAB in the tth frame. Then RE is formulated as:334

xl
t = [yl�1

t , elt],

yl
t = FGAB(xl

t),

elt+1 = fc(fw(y
l
t)),

(10)

where [·,·] denotes the concatenating operation. fc denotes335

3⇥3 convolution. fw represents the spatial warping module336

that spatially align the embedding e
l

t+1 with y
l�1
t+1. Using this337

embedding scheme, the image information can pass through 338

the long sequence from frame to frame so as to capture more 339

reliable and robust long-range temporal dependencies. 340

Experiment 341

Datasets and Evaluation Metrics 342

DVD. The DVD (Su et al. 2017) dataset consists of 71 343

videos with 6708 blurry-sharp image pairs. It is divided into 344

train/test subsets with 61 videos (5708 image pairs) 345

and 10 videos (1000 image pairs). DVD is captured with 346

mobile phones and DSLR at a frame rate of 240 fps. 347

GOPRO. The GOPRO (Nah et al. 2017) benchmark is com- 348

posed of over 3300 blurry-sharp image pairs of dynamic 349

scenes. It is obtained by a high-speed camera. The training 350

and testing subsets are split in proportional to 2:1. 351

Real Blurry Videos. To validate the generality of FGST, we 352

evaluate our models on the real blurry datasets collected by 353

(Cho et al. 2012). Because the ground truth is inaccessible, 354

we only compare visual results of FGST and other methods. 355

Evaluation Metrics. We adopt peak signal-to-noise ratio 356

(PNSR) and structural similarity (SSIM) (Wang et al. 2004) 357

as the metrics to evaluate the video delurring performance. 358

Implementation Details 359

We implement FGST in PyTorch. We adopt a pretrained 360

SPyNet (Ranjan et al. 2017) as the optical flow estimator. 361

All the modules are trained with the Adam (Kingma and Ba 362

2015) optimizer (�1 = 0.9 and �2 = 0.999) for 600 epochs. 363

The initial learning rate is set to 2⇥10�4 and 2.5⇥10�5 re- 364

spectively for the deblurring model and optical flow estima- 365

tor. The learning rate is halved every 200 epochs during the 366

training procedure. Patches at the size of 256⇥256 cropped 367

from training frames are fed into the models. The batch size 368

is 8. The temporal radius r of the neighboring frames is set 369

to 1. The horizontal and vertical flips are performed for data 370

augmentation. The models are trained on 8 V100 GPUs. L1 371

loss between restored and GT videos is used for supervision. 372

Tab. 1 Quantitative Comparison with SOTA methods on DVD dataset.

Method EDVR Tao et al. Su et al. DBLRNet STFAN Xiang et al. TSP Suin et al. ARVo FGST
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PSNR " 28.51 29.98 30.01 30.08 31.15 31.68 32.13 32.53 32.80 33.36
SSIM " 0.864 0.884 0.888 0.885 0.905 0.916 0.927 0.947 0.935 0.950

Table 1: Video deblurring results compared with other methods on the DVD benchmark (Su et al. 2017). FGST achieves SOTA results.
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Figure 3: Visual comparisons between our FGST and SOTA methods on GOPRO dataset (Nah et al. 2017). Please zoom in for a better view.

Discussion. Please note that FGST also belongs to the global305

Transformer. However, compared to original global and lo-306

cal Transformers, FGST neither attends to redundant key el-307

ements nor suffers from limited receptive fields of position-308

specific windows. Instead, FGST enjoys the guidance of mo-309

tion information and globally retrieves sparse yet highly re-310

lated tokens that are misaligned in the neighboring frames.311

On the other hand, unlike previous flow-based methods312

that sacrifice detailed contents while warping the neighbor-313

ing frames, FGST combines motion cues with self-attention314

calculation. Thus, the image prior information can be pre-315

served. This also leads to higher flexibility and robustness316

because adjacent FGABs sample contents independently.317

Please refer to the supplementary for detailed discussions.318

319 Recurrent Embedding320

When designing FGSW-MSA, we only attend to neighbor-321

ing frames within a local short temporal sequence due to322

the limitation of computational complexity. To further cap-323

ture more robust long-range temporal dependencies, we pro-324

pose Recurrent Embedding (RE). RE is motivated by Recur-325

rent Neural Network (RNN). More specifically, as shown in326

Fig. 2 (c), we exploit RE in each FGAB to aggregate the out-327

put of the last frame and the input of the current frame. Some328

intermediate steps between FGABs are omitted for simplic-329

ity. Because RE preserves the information of all frames in a330

long temporal sequence and keeps updating, FGAB is capa-331

ble of modeling the long-range temporal correlations. xl

t
, yl

t
,332

e
l

t
respectively denote the input, output, and RE of the lth333

FGAB in the tth frame. Then RE is formulated as:334

xl
t = [yl�1

t , elt],

yl
t = FGAB(xl

t),

elt+1 = fc(fw(y
l
t)),

(10)

where [·,·] denotes the concatenating operation. fc denotes335

3⇥3 convolution. fw represents the spatial warping module336

that spatially align the embedding e
l

t+1 with y
l�1
t+1. Using this337

embedding scheme, the image information can pass through 338

the long sequence from frame to frame so as to capture more 339

reliable and robust long-range temporal dependencies. 340

Experiment 341

Datasets and Evaluation Metrics 342

DVD. The DVD (Su et al. 2017) dataset consists of 71 343

videos with 6708 blurry-sharp image pairs. It is divided into 344

train/test subsets with 61 videos (5708 image pairs) 345

and 10 videos (1000 image pairs). DVD is captured with 346

mobile phones and DSLR at a frame rate of 240 fps. 347

GOPRO. The GOPRO (Nah et al. 2017) benchmark is com- 348

posed of over 3300 blurry-sharp image pairs of dynamic 349

scenes. It is obtained by a high-speed camera. The training 350

and testing subsets are split in proportional to 2:1. 351

Real Blurry Videos. To validate the generality of FGST, we 352

evaluate our models on the real blurry datasets collected by 353

(Cho et al. 2012). Because the ground truth is inaccessible, 354

we only compare visual results of FGST and other methods. 355

Evaluation Metrics. We adopt peak signal-to-noise ratio 356

(PNSR) and structural similarity (SSIM) (Wang et al. 2004) 357

as the metrics to evaluate the video delurring performance. 358

Implementation Details 359

We implement FGST in PyTorch. We adopt a pretrained 360

SPyNet (Ranjan et al. 2017) as the optical flow estimator. 361

All the modules are trained with the Adam (Kingma and Ba 362

2015) optimizer (�1 = 0.9 and �2 = 0.999) for 600 epochs. 363

The initial learning rate is set to 2⇥10�4 and 2.5⇥10�5 re- 364

spectively for the deblurring model and optical flow estima- 365

tor. The learning rate is halved every 200 epochs during the 366

training procedure. Patches at the size of 256⇥256 cropped 367

from training frames are fed into the models. The batch size 368

is 8. The temporal radius r of the neighboring frames is set 369

to 1. The horizontal and vertical flips are performed for data 370

augmentation. The models are trained on 8 V100 GPUs. L1 371

loss between restored and GT videos is used for supervision. 372

Tab. 2 Quantitative Comparison with SOTA methods on GOPRO dataset.

Method EDVR Tao et al. Su et al. DBLRNet STFAN Xiang et al. TSP Suin et al. ARVo FGST
(Wang et al. 2019) (Tao et al. 2018) (Su et al. 2017) (Zhang et al. 2018) (Zhou et al. 2019) (Xiang et al. 2020) (Pan et al. 2020) (Suin et al. 2021) (Li et al. 2021) (Ours)

PSNR " 28.51 29.98 30.01 30.08 31.15 31.68 32.13 32.53 32.80 33.36
SSIM " 0.864 0.884 0.888 0.885 0.905 0.916 0.927 0.947 0.935 0.950

Table 1: Video deblurring results compared with other methods on the DVD benchmark (Su et al. 2017). FGST achieves SOTA results.
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Table 2: Video deblurring results compared with other methods on the GOPRO dataset (Nah et al. 2017). FGST achieves SOTA results.
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Figure 3: Visual comparisons between our FGST and SOTA methods on GOPRO dataset (Nah et al. 2017). Please zoom in for a better view.

Discussion. Please note that FGST also belongs to the global305

Transformer. However, compared to original global and lo-306

cal Transformers, FGST neither attends to redundant key el-307

ements nor suffers from limited receptive fields of position-308

specific windows. Instead, FGST enjoys the guidance of mo-309

tion information and globally retrieves sparse yet highly re-310

lated tokens that are misaligned in the neighboring frames.311

On the other hand, unlike previous flow-based methods312

that sacrifice detailed contents while warping the neighbor-313

ing frames, FGST combines motion cues with self-attention314

calculation. Thus, the image prior information can be pre-315

served. This also leads to higher flexibility and robustness316

because adjacent FGABs sample contents independently.317

Please refer to the supplementary for detailed discussions.318

319 Recurrent Embedding320

When designing FGSW-MSA, we only attend to neighbor-321

ing frames within a local short temporal sequence due to322

the limitation of computational complexity. To further cap-323

ture more robust long-range temporal dependencies, we pro-324

pose Recurrent Embedding (RE). RE is motivated by Recur-325

rent Neural Network (RNN). More specifically, as shown in326

Fig. 2 (c), we exploit RE in each FGAB to aggregate the out-327

put of the last frame and the input of the current frame. Some328

intermediate steps between FGABs are omitted for simplic-329

ity. Because RE preserves the information of all frames in a330

long temporal sequence and keeps updating, FGAB is capa-331

ble of modeling the long-range temporal correlations. xl

t
, yl

t
,332

e
l

t
respectively denote the input, output, and RE of the lth333

FGAB in the tth frame. Then RE is formulated as:334

xl
t = [yl�1

t , elt],

yl
t = FGAB(xl

t),

elt+1 = fc(fw(y
l
t)),

(10)

where [·,·] denotes the concatenating operation. fc denotes335

3⇥3 convolution. fw represents the spatial warping module336

that spatially align the embedding e
l

t+1 with y
l�1
t+1. Using this337

embedding scheme, the image information can pass through 338

the long sequence from frame to frame so as to capture more 339

reliable and robust long-range temporal dependencies. 340

Experiment 341

Datasets and Evaluation Metrics 342

DVD. The DVD (Su et al. 2017) dataset consists of 71 343

videos with 6708 blurry-sharp image pairs. It is divided into 344

train/test subsets with 61 videos (5708 image pairs) 345

and 10 videos (1000 image pairs). DVD is captured with 346

mobile phones and DSLR at a frame rate of 240 fps. 347

GOPRO. The GOPRO (Nah et al. 2017) benchmark is com- 348

posed of over 3300 blurry-sharp image pairs of dynamic 349

scenes. It is obtained by a high-speed camera. The training 350

and testing subsets are split in proportional to 2:1. 351

Real Blurry Videos. To validate the generality of FGST, we 352

evaluate our models on the real blurry datasets collected by 353

(Cho et al. 2012). Because the ground truth is inaccessible, 354

we only compare visual results of FGST and other methods. 355

Evaluation Metrics. We adopt peak signal-to-noise ratio 356

(PNSR) and structural similarity (SSIM) (Wang et al. 2004) 357

as the metrics to evaluate the video delurring performance. 358

Implementation Details 359

We implement FGST in PyTorch. We adopt a pretrained 360

SPyNet (Ranjan et al. 2017) as the optical flow estimator. 361

All the modules are trained with the Adam (Kingma and Ba 362

2015) optimizer (�1 = 0.9 and �2 = 0.999) for 600 epochs. 363

The initial learning rate is set to 2⇥10�4 and 2.5⇥10�5 re- 364

spectively for the deblurring model and optical flow estima- 365

tor. The learning rate is halved every 200 epochs during the 366

training procedure. Patches at the size of 256⇥256 cropped 367

from training frames are fed into the models. The batch size 368

is 8. The temporal radius r of the neighboring frames is set 369

to 1. The horizontal and vertical flips are performed for data 370

augmentation. The models are trained on 8 V100 GPUs. L1 371

loss between restored and GT videos is used for supervision. 372

Fig. 1 Qualitative Comparison with SOTA methods.
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