Universal and data-adaptive algorithms for

model selection in linear contextual bandits

Vidya Muthukumar, Georgia Tech ECE and ISyE

(Joint work with Akshay Krishnamurthy, Microsoft Research; work conducted at Simons Institute)

The model selection problem

Setting: K-armed linear contextual bandit problem...with potential simple MAB structure

Model selection, Objective 1 (optimal): Design a single algorithm that achieves regret rates

Simple model (SM):
$$R_T^S = \mathcal{O}(\sqrt{KT})$$

Complex model (CM):
$$R_T^C = \mathcal{O}((\sqrt{d} + \sqrt{K})\sqrt{T})$$

The model selection problem

Setting: K-armed linear contextual bandit problem...with potential simple MAB structure

Model selection, Objective 2 (suboptimal but non-trivial): Design a single algorithm that achieves regret rates (for $\alpha < 1/2$)

Simple model (SM): $R_T^S = \mathcal{O}(K^{\beta}T^{1-\alpha})$

Complex model (CM): $R_T^C = \mathcal{O}(K^\beta d^\alpha T^{1-\alpha})$

Complex model (CM): $||\theta^*||_2^2 \gg 0$

Existing algorithms for model selection (and their limitations)

Meta exploration-vs-exploitation tradeoff: ensure success of test v.s. exploit simple model

OSOM (Chatterji, Muthukumar and Bartlett, AISTATS 2020)

ModCB (Foster, Krishnamurthy and Luo, NeurlPS 2019)

for all arms (very strong)

Achieves Objective 1 only under feature diversity condition | **Achieves Objective 2** (for lpha=1/3), but only under feature diversity condition averaged over arms

Our [universal, data-adaptive] algorithms

ModCB.A (adaptive)

Statistical test on:

(upper bound on) gap between best performance of CM/SM

ModCB.U (universal)

New universal statistical test on:

(upper bound on) gap between
best performance of CM/SM

Achieves Objective 2 (for $\alpha=1/6$) under no feature diversity conditions whatsoever

Summary of main results

Algorithm	Obj. 1 (optimal rates)	Obj. 2 ($d^{\alpha}T^{1-\alpha}$ rates)	context assumption
OSOM (Chatterji et al., 2020)	Yes	$Yes (\alpha = 1/2)$	$\forall i \in [K] : \boldsymbol{\Sigma}_i \succeq \gamma \boldsymbol{I}_d$
ModCB (Foster et al., 2019)	No	$Yes (\alpha = 1/3)$	$oldsymbol{\Sigma} \succeq \gamma oldsymbol{I}_d$
ModCB.U	No	$Yes (\alpha = 1/6)$	iid contexts only
CORRAL-STYLE	No	No	iid contexts only

Table of results, universality

Algorithm	Arm-specific diversity	Arm-averaged diversity	
OSOM $\log(T)/\text{gap and }\sqrt{dT}$		None	
ModCB	$T^{2/3}$ and $d^{1/3}T^{2/3}$	$T^{2/3}$ and $d^{1/3}T^{2/3}$	
ModCB.A	$\log(T)/\mathrm{gap}$ and \sqrt{dT}	$T^{2/3}$ and $d^{1/3}T^{2/3}$	

Table of results, data-adaptivity

Future work

- Universality and data-adaptivity in one algorithm
- Nested linear contextual bandits (beyond restrictive block-diagonal assumption)
- Beyond linear models
- Model selection under misspecification

Thank you!