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The model selection problem

Setting: K-armed linear contextual bandit problem...with potential simple MAB structure
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Existing algorithms for model selection (and their limitations)

Meta exploration-vs-exploitation tradeoft: ensure success of test v.s. exploit simple model

OSOM (Chatterji, Muthukumar and Bartlett, AISTATS 2020)| ModCB (Foster, Krishnamurthy and Luo, NeurlPS 2019)

No of rounds

Statistical test on:
CM regret under SM algorithm

Achieves Objective 1 only under feature diversity condition | Achieves Objective 2 (for a = 1/3), but only under feature

No of rounds

Statistical test on:
(upper bound on) gap between
best performance of CM/SM

for all arms (very strong) diversity condition averaged over arms



Our [universal, data-adaptive] algorithms

ModCB.A (adaptive) ModCB.U (universal)

No of rounds No of rounds

New universal statistical test on:
(upper bound on) gap between
best performance of CM/SM

Statistical test on:

(upper bound on) gap between
best performance ot CM/SM

Achieves Objective 1 under arm-specitic diversity and Achieves Objective 2 (for a = 1/6 ) under

Objective 2 (for & = 1/3) under arm-averaged diversity no feature diversity conditions whatsoever



Summary of main results

Algorithm Obj. 1 (optimal rates) | Obj. 2 (d*T"'~*rates) | context assumption
OSOM (Chatterji et al., 2020) Yes Yes (a = 1/2) Vi€ [K]|:X3; = ~I4
MoDCB (Foster et al., 2019) No Yes (o = 1/3) D IRaRe? P
MoDpCB.U No Yes (a = 1/6) iid contexts only
CORRAL-STYLE No No 11d contexts only

Table of results, universality

Algorithm Arm-specific diversity | Arm-averaged diversity

OSOM log(T')/gap and vdT None
MoDCB T2/3 and d*/372%/3 T273 ond J1/372/3

MODCB.A | log(T)/gap and v/ dT 72/3 and d1/372/3

Table of results, data-adaptivity



Future work

® Universality and data-adaptivity in one algorithm

® Nested linear contextual bandits (beyond restrictive block-diagonal
assumption)

® Beyond linear models

® Model selection under misspecification



Thank you!

Please see our poster and our tull paper on arXiv: 2111.04688



