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Online representation learning objectives fail in offline RL!
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Exponential Error Amplification!



Can we provably perform good
OPE on high-dimensional tasks

through Representation Learning ?



One-Step OPE Ordinary Least Squares on

R(s,a) .= [R | S=S,A=a].

Realizability

Coverage
R(s,a) = ¢(s,a)Tw T

5, [0(s,a)p(s,a)’ ]

= Sample Efficiency!




M“lti-Step (RL) OPE Estimate Q%(s, a) := E_ i ;/trh | 5o = 8,0y =a

h=0
Curse of horizon!

Realizability
Q" (s,a) = ¢(s,a)" w"

3 Coverage == [nformation Theoretic
E,[¢(s,a)p(s,a)l] Lower Bound of Q((d/2)*)

Wang, R., Foster, D. P., and Kakade, S. M. What are the statistical limits of offline RL with linear function approximation? ICLR 2021.



Q"(s,a) .= Zytrh\s():s,a():a .

h=0

Multi-Step (RL) OPE [Ej,“m“te ]

Bellman Completeness

feF = T™(f) €

Coverage

(— . '
2, [6(s,a)b(s,a)T] = Sample Efficiency!
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Bellman Completeness

Bellman Operator 7*(f)(s,a) := r(s,a) + yEy _p(s o LSS )]
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Bellman Completeness

Bellman Operator 7*(f)(s,a) := r(s,a) + yEy _p(s o LSS 7)]

NG )

g“&ﬁ

Proj 7 *(f)(s. )

- If fis Bellman Complete Note

- If exactly bellman complete,

A -If fis not Bellman Complete e, =0

We say a representation ¢ is Linear Bellman Complete if # = {¢TW w e R? } is Bellman Complete.



Equivalent Characterization

Linear BC is equivalent to, there exist (p, M) € R% x R%%so that

2

= 0.
r(s, a) ,

U

* formal result with norm constraints on p, M in paper.
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Learning Bellman Complete Features

with coverage

o Suppose the representation class @ contains a Linear BC feature ¢ *,
with coverage A . (E [¢p ™ (s,a)d ™ (s, a)']) > p.

* Self-supervised objective:

?ﬁ\ c arg min min o || L%] ¢(S, a) B lﬂb(s’, 71'6)]

2

ped | (p,M)e® r(s, a)

2

S.L. ;Lmin ( _QZ[¢(S9 a)¢(S9 a)T]) > ﬁ/Z

* formal result with stochastic transitions in paper.







1. Learn ¢ by minimizing self-supervised
Bellman Completeness loss.




1. Learn ¢ by minimizing self-supervised
Bellman Completeness loss.

N

2. Run LSPE with the learned ¢ .




Theory: Representation Learning

* Theorem: For any ¢ and large enough dataset of size NV, with

probability at least 1 — o, we have that the ERM 7¢\ satisfies,
d - comp(D)
VN )

2. Coverage, with 4. ( — | gb\(s, a) zb\(s, a)T]) > pl4.

1. Approximately Linear BC, with ¢, = O (

* formal result with stochastic transitions in paper.



Theory: End-to-End OPE Guarantee

* Theorem: For any ¢ and large enough dataset of size N, with probability at least

1 — 0, BCRL with K iterates of LSPE evaluates well for any distribution p,,
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* formal result with stochastic transitions in paper.
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Theory: End-to-End OPE Guarantee

* Theorem: For any ¢ and large enough dataset of size N, with probability at least
1 — 0, BCRL with K iterates of LSPE evaluates well for any distribution p,,

—
ddgg
- ~ N }/K/Z \ dv - p
Vp()e - _SNpO[fK(Sa ﬂe)] = @ - 4+ . E

+— .
-y  A=-p> " Q-p/BN

A

Exponentlall.y dec.aymg In Non-Linear BC part Statistical error from evaluation,
num. LSPE iterations K bounded by density ratio converging to zero as N grows

* formal result with stochastic transitions in paper.
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Lxperiments

Setup
Offline Datasets
Task Target Behavior
performance Performance
DeepMind Control Suite Finger Turn Hard 927 226 (24%)
Cheetah Run 758 192 (25%)
Quadruped Walk 873 236 (27%)
4 Image Based Continuous Control Tasks Humanoid Stand 827 277 (33%)




Lxperiments

Setup
Offline Datasets
Task Target Behavior
performance Performance
DeepMind Control Suite Finger Turn Hard 927 226 (24%)
Cheetah Run 758 192 (25%)
Quadruped Walk 873 236 (27%)
4 Image Based Continuous Control Tasks Humanoid Stand 827 277 (33%)

Offline DB: 100K (~200 Trajectories)



Example Trajectories: Cheetah Run

Behavior Policy
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Example Trajectories: Cheetah Run

Behavior Policy Target Policy

g T

Train on this ... ... to evaluate this
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How is BCRL as a Representation?
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Representation Learning Comparison:
CURL and SPR
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LSPE Iterations with Fixed Trained Representations



How is BCRL as a Representation?

Cheetah Run Quadruped Walk

150 150

100 100

SPR
- CURL
——— BCRL (ours)

250 500 750 1000
[L.SPE Iterations

09 250 \ 500 750 09

LLSPK Iterations

Exponential Error Amplification!



How is BCRL as a Representation?

Cheetah Run Quadruped Walk
V
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Takeaway

- Representations learned by BCRL outperforms baselines
-  BCRL does not exhibit exponential error amplification in any task
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Takeaway

- BCRL is competitive with FQE and outperforms other OPE baselines
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OPE Performance with On + Off policy Data

Testing Bellman Completeness

OPE Pert. (On + Off-Policy Data)

60 100K off-policy + 100K on-policy
samples
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OPE Performance with On + Off policy Data

Testing Bellman Completeness

OPE Perf. (On + Off-Policy Data) | NOTE:

60 Adding on-policy ensures offline
data coverage over target policy
for all baselines
[1]
% 40
! Demonstrate the unique
20 benefit of learning Bellman
complete representations!
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OPE Performance with On + Off policy Data

Testing Bellman Completeness
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RMSE
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Detailed Look

Closer look at Cheetah and Humanoid

Cheetah Run s Humanoid Stand
—— FQE
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Iterations Iterations



OPE Performance Beyond Init. State Distribution

Testing Coverage
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OPE Performance Beyond Init. State Distribution

Testing Coverage

OPE Beyond Initial State Dist. —

150 Evaluate at all time steps
of target policy rollout
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OPE Performance Beyond Init. State Distribution

Testing Coverage

OPE Beyond Initial State Dist.

150
NOTE:
If representations are
exactly Bellman Complete and
10 has well-conditioned
feature covariance matrix
Should be able to evaluate
0 well at any state
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OPE Performance Beyond Init. State Distribution

Testing Coverage

OPE Beyond Initial State Dist.

150
10
Takeaway
- BCRL more robustly evaluates
' out-of-distribution
O .
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Takeaways

1. We can do provably good Offline Policy Evaluation with
representations that are bellman complete and have good
coverage over the offline data.

2. BCRL is able to both scale to complex image-based tasks and be
a competitive policy evaluator.

3. Although BCRL generally performs well, there is still room for
improvement as seen in Humanoid Stand.



‘T’hank you!

Github Repository: https:/github.com/CausalML/bcrl



https://github.com/CausalML/bcrl

Appendices



CURL

* Contrastive loss pushes different
cropped frames to have different
representations.

ﬁplay buffer

-

:‘ >- | .:
Observation  ° ﬂ

Query

(

Reinforcement
Learning

\

\_
f
Contrastive

Unsupervised
Learning

8

/
D\

/

Laskin, Michael, Aravind Srinivas, and Pieter Abbeel. "Curl: Contrastive unsupervised representations for reinforcement learning." International Conference on

Machine Learning. PMLR, 2020.



SPR

* Bootstrapping from latent

representations by predicting into

the future.

St+k + aug.

fo
online -learnin :
d g » Q-Learning Loss
encoder —> LLLT1I Lo g
<
¢ iatw"aatka:l
conv. transition
exponential model
moving avg. ¢ 9o q
~ online -~ .
v “t+k —> e —> prediction — Ytk
projection Cosine
Similarity Loss
farget i ~ target N
encoder O 2tk projection > Yt+k
f m Jm

Schwarzer, M., Anand, A., Goel, R., Hjelm, R. D., Courville, A. C., and Bachman, P. Data-efficient reinforcement learning with momentum predictive

representations. ICLR, 2021.
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Equivalent Characterization

@ is Linear BC, meaning max min szT O—T ”(wlT d)||, = 0.
wEBy WHEBy,

!

There exist (p, M) € By, X | aXd with |M||, < 1sothat

2
M —s'~P(s,a ,’ e
[pT] b5, d) — [V P(s,0)P (S n)]

= 0.
r(s, a) ,

U

* formal result with norm constraints on p, M in paper.



Equivalent Characterization

@ is Linear BC, meaning max min szT O—T ”(wlT d)||, = 0.
wEBy WHEBy,

Backward Direction: ﬁ

For any w; set w, = p + M'w,.

There exist (p, M) € By, X | aXd with |M||, < 1sothat

2
M B Y _S’NP(S,CZ)¢(S ,’ ﬂe)] -
[ﬂT] P ) [ (s, a) -

U

2

* formal result with norm constraints on p, M in paper.



Equivalent Characterization

@ is Linear BC, meaning max min szT O—T ”(wlT d)||, = 0.
wEBy WHEBy,

Forward Direction:
To get p: set w; = 0 and use w,.
ﬁ To get ith row of M:

Backward Direction: set w; = ¢;and use w, — p.

e

There exist (p, M) € By, X | aXd with |M||, < 1sothat

2
M —s'~P(s,a ,’ e
) [pT] P(s,a) — [}/ PPl 7 )] = 0.

r(s, a) ,

For any w; set w, = p + M'w,.

* formal result with norm constraints on p, M in paper.



Theory: LSPE OPE Guarantee

* Theorem: Let ¢ be a € -approximate Linear BC feature.
For any 0 and large enough dataset of size NV, with probability at least 1 — 9, K iterates
of LSPE evaluates well for any distribution p,

da

A | K2 \ dv ] d
Vie—E,. )| €0 + - &£, +1/K(pp) .
B T T A A e
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Theory: LSPE OPE Guarantee

* Theorem: Let ¢ be a € -approximate Linear BC feature.

For any 0 and large enough dataset of size NV, with probability at least 1 — 9, K iterates

of LSPE evaluates well for any distribution p,

Po

_SNpO[]?K(Sa ﬂe)]

~/

€0

K12
/

\ dv
00
4

(I =y)

Exponentially decaying in
num. LSPE iterations K

da

(1 =1y

Non-Linear BC part
bounded by density ratio

- €, +/k(po)

d

(1-p=/N |

Statistical error from evaluation,
converging to zero as N grows



Least Squares Policy Evaluation

Algorithm 1 Least Squares Policy Evaluation (LSPE)

1. Input: Target policy 7., features ¢, dataset D
2: Initialize 4/9\0 =0 € By.

3: fork=1,2,..., K do

4:  Set fr—1(s,a) = 0] _,¢(s,a),

Vk—l (3) — ﬂawwe(s) [fk—l (37 a)]
5.  Perform linear regression:

1 N

9, € arg min— OTd(s;,a;) — 1 — Vi . :
¢ € argmi N;( o(si,a;) YWi—1(s;))

6: end for
7: Return fg.




Relative Coverage

=[G, )p(s, @) Jx

T
k(py) = sup
xeR?

where 2(¢) =

X' (P)x

= [p(s, a)p(s, a)” ]

Can be bounded when, e.g.

* >(¢) is invertible and well-conditioned.

1 1

o U =—d.*+ —u, i.e. density ratio is upper bounded.

2 02

¢ D (g [0, (s, )11 ).

1.0
0.5%

0.0}
-0.5}
-1.0Y

0 .




Proof Breakdown

e First, a “value difference lemma”:

|
Vi = Bl 0] = T EylT s @) = fis, )

4
K12
. Then, |l[fx = T fkllar < 1—_}/1?2% e = T Fi—illas +7 .
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e First,

V) —

4
. Then, |l[fx = T fkllar < T, max

R

a “value difference lemma”:

—7

Maximum per-iteration error from LSPE
< sup || ngb — 9”(19Tqb)Hdg,where
0

8eBw\ R
0, :=argmin ¢ (0,9)
0€By, -
5 | (165, @) + 787 p(s' m) = 07 p(s, )
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Proof Breakdown

e First, a “value differencl:e lemma”:
V, —E,Lf(s,m)] = Ty —arl 7 (s, @) = f(s, m)].

4
K12
. Then, |l[fx = T fkllar < 1—_}/1?2% e = T Fi—illas +7 .

R

Maximum per-iteration error from LSPE

< sup [|05¢ — T P)ll; , where adr
'9€BV‘//\ s 7o < dzo €
0, :=argmin ¢ (0,9) / \ a
0€By, _
—~ 2
Z(0,9) :=Lg [(r(s, a) +y9" (s’ m) — 0" (s, Cl)) \ T
< sup 16§ — T h) 4

JeEBy,



Stochastic BCRL

* Recall the Bellman Complete loss is,

M —s'~P(s,a ,’ e
LoTl B(s. ) — ly P(s.a)lP(S n)]]

r(s, a)

2

min [Eg
(p.M)EO ,

* When task is stochastic, double sampling issue.

* Fix by subtracting the overestimation bias.
(which is the variance, and can be estimated!)



Stochastic BCRL

. B | Mos.0) = rpis'm) | -

g
 So, when MDP is stochastic, BCRL is:
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Theory: Representation Learning

* Theorem: Assume realizability of &.

For any 0 and large enough dataset of size N, with probability at least
I — o, we have that the ERM 7¢\ satisfies,

1. Approximately Linear BC, with
~ [ d-comp(D . comp(€&
e =0 p(P) L7 p(&) |
VN JN

2. Coverage, with 4 . ( | $(S, a) zb\(s, a)T]) > (/4.




