De novo mass spectrometry peptide sequencing with a transformer model

Melih Yilmaz, Will Fondrie, Wout Bittremieux, Sewoong Oh, William Noble

Mass spectrometry provides a high-throughput framework for identifying proteins

- Proteins are digested into ~15-20 amino acid long peptides
- Peptides are analyzed in the mass spectrometer

The goal: assign a generating peptide to each spectrum

 Given a spectrum, computationally identify the amino acid sequence of its peptide (peptide sequencing)

De novo sequencing infers peptide directly from spectrum

De novo sequencing infers peptide directly from spectrum

- In addition, we also observe precursor mass, i.e. full mass of the peptide, and charge

De novo sequencing infers peptide directly from spectrum

- In addition, we also observe precursor mass, i.e. full mass of the peptide, and charge
- Hard to de novo sequence accurately

Shortcomings of existing methods

- Accuracy is still low: correctly assigns peptides to 40-60% of spectra

Shortcomings of existing methods

- Accuracy is still low: correctly assigns peptides to 40-60% of spectra
- Complex models: combines multiple neural nets and post-processing steps
 - → higher # of parameters and slow inference

	_	_	
	Deed	SMS	Point
CNN for spectrum peak embedding	\checkmark	√	
CNN for spectrum processing	\checkmark	\checkmark	
RNN for peptide sequence processing	\checkmark	√	\checkmark
PointNet			√
Dynamic programming post-processor	√		√
Database search post-processor		✓	
Discretization of <i>m/z</i> axis	√	√	

Table: Comparison of existing deep learning methods for de novo peptide sequencing.

Shortcomings of existing methods

- Accuracy is still low: correctly assigns peptides to 40-60% of spectra
- Complex models: combines multiple neural nets and post-processing steps
 - → higher # of parameters and slow inference
- m/z axis discretization: presents a tradeoff between low binning resolution and higher model complexity

	_	DeepHovo SMS		
	Deed	SMS	PointNo	
CNN for spectrum peak embedding	\checkmark	√		
CNN for spectrum processing	\checkmark	\checkmark		
RNN for peptide sequence processing	\checkmark	√	\checkmark	
PointNet			✓	
Dynamic programming post-processor	√		√	
Database search post-processor		√		
Discretization of <i>m/z</i> axis	✓	√		

Table: Comparison of existing deep learning methods for de novo peptide sequencing.

Peptide sequencing can be conceived as translation between two sequences (spectrum → peptide)

Peptide sequencing can be conceived as translation between two sequences (spectrum → peptide)

And learned with a transformer model

Casanovo: a de novo peptide sequencing transformer

 We propose a unified solution to sequencing sub-tasks

	_	2040	PointHovo Casano		
	Deed	Joyo SMS	Point	Casane	
CNN for spectrum peak embedding	√	√			
CNN for spectrum processing	\checkmark	\checkmark			
RNN for peptide sequence processing	\checkmark	\checkmark	\		
PointNet			\checkmark		
Transformer				\checkmark	
Dynamic programming post-processor	\checkmark		\checkmark		
Database search post-processor		\checkmark			
Precursor <i>m/z</i> filter				\checkmark	
Discretization of m/z axis	√	√	·		

Table: Comparison of deep learning methods for de novo peptide sequencing.

Casanovo: a de novo peptide sequencing transformer

- We propose a unified solution to sequencing sub-tasks
- Casanovo directly models spectrum peaks
 - No need for m/z discretization!

		1040	1040		
	Deer	MOVO SMS	Point	Casanovo	
CNN for spectrum peak embedding	√	√			
CNN for spectrum processing	\checkmark	\checkmark			
RNN for peptide sequence processing	\checkmark	\checkmark	\		
PointNet			\		
Transformer				\checkmark	
Dynamic programming post-processor	\checkmark		\checkmark		
Database search post-processor		\checkmark			
Precursor <i>m/z</i> filter				\checkmark	
Discretization of m/z axis	√	√	·		

Table: Comparison of deep learning methods for de novo peptide sequencing.

Casanovo: a de novo peptide sequencing transformer

- We propose a unified solution to sequencing sub-tasks
- Casanovo directly models spectrum peaks
 - No need for m/z discretization!
- Filters out implausible de novo sequences based on precursor m/z

	seephovo		Point Casan		
	Deer	SMS	Point	Casane	
CNN for spectrum peak embedding	√	√			
CNN for spectrum processing	\	\checkmark			
RNN for peptide sequence processing	\checkmark	\checkmark	\		
PointNet			\checkmark		
Transformer				\checkmark	
Dynamic programming post-processor	\checkmark		\checkmark		
Database search post-processor		\checkmark			
Precursor <i>m/z</i> filter				\checkmark	
Discretization of m/z axis	√	√			

Table: Comparison of deep learning methods for de novo peptide sequencing.

Cross-species evaluation framework

 Benchmark dataset with ~1.5M peptide-spectra matches from 9 species was used

8 species

- Train/Validation
 - 90/10
 - ~1.4M spectra

1 species (e.g. yeast)

- Test
 - ~100k spectra

Cross-species evaluation framework

- Benchmark dataset with ~1.5M peptide-spectra matches from 9
 species was used
- Test set peptides are mostly unique, i.e. not seen in the training set

8 species

- Train/Validation
 - 90/10
 - ~1.4M spectra

1 species (e.g. yeast)

- Test
 - ~100k spectra

Casanovo achieves higher peptide precision in all species

- Consistently
 better precision
 at the same
 coverage
- Higher overall precision in all
- Mean AUC improvement of 0.13

Thanks!

Code @ github.com/Noble-Lab/casanovo

Bill Noble

Will Fondrie

Sewoong Oh

Wout Bittremieux

Noble Lab

Dejun

Bobby

Gang

Alan

Mu

Robin

Kianna

Lincoln

Melih

