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Standard Binary Classification

Family of all measurable functions: Z 5

All distributions: &
(Zhang, 04a; Bartlett et al., 06; Mohri et al., 18)
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Standard Binary Classification

General hypothesis sets: #

Distribution-independent and distribution-dependent
(Our contribution)
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Adversarial Attacks (Szegedy et al., 13
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Adversarially Robust Classification

General hypothesis sets: #

Distribution-independent and distribution-dependent
(Our contribution)

£: supremum-based margin-based loss ¢ <—’?—> ¢, : adversarial 0/1 loss 7,
b= sup  POfx) £y = sup Lo ()
X't ||lx—x'||<y X' lxe=x'|<y

Adversarial # -consistency bound



# -Consistency Bounds Analysis

R () = R, < (P () - R )
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Inverse of # -estimation error transformation + Minimizability gap



Minimizability Gap
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we cannot hope to estimate or minimize.
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Tightness!



A -Estimation Error Transformation
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Conclusion

# -consistency bounds for both standard and adversarial binary classification
 New estimation error guarantees for both the non-adversarial 0/1 loss function and
the adversarial 0/1 loss function

 Compare different surrogate loss functions of the 0/1 loss or adversarial loss, given
the specific hypothesis set used

* Theoretical and conceptual tools helpful for the analysis of other loss functions and
other hypothesis sets
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Future Directions

« A -consistency bounds for other loss functions and other hypothesis sets
» Incorporating the trade-off of the optimization and # -consistency bounds
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