

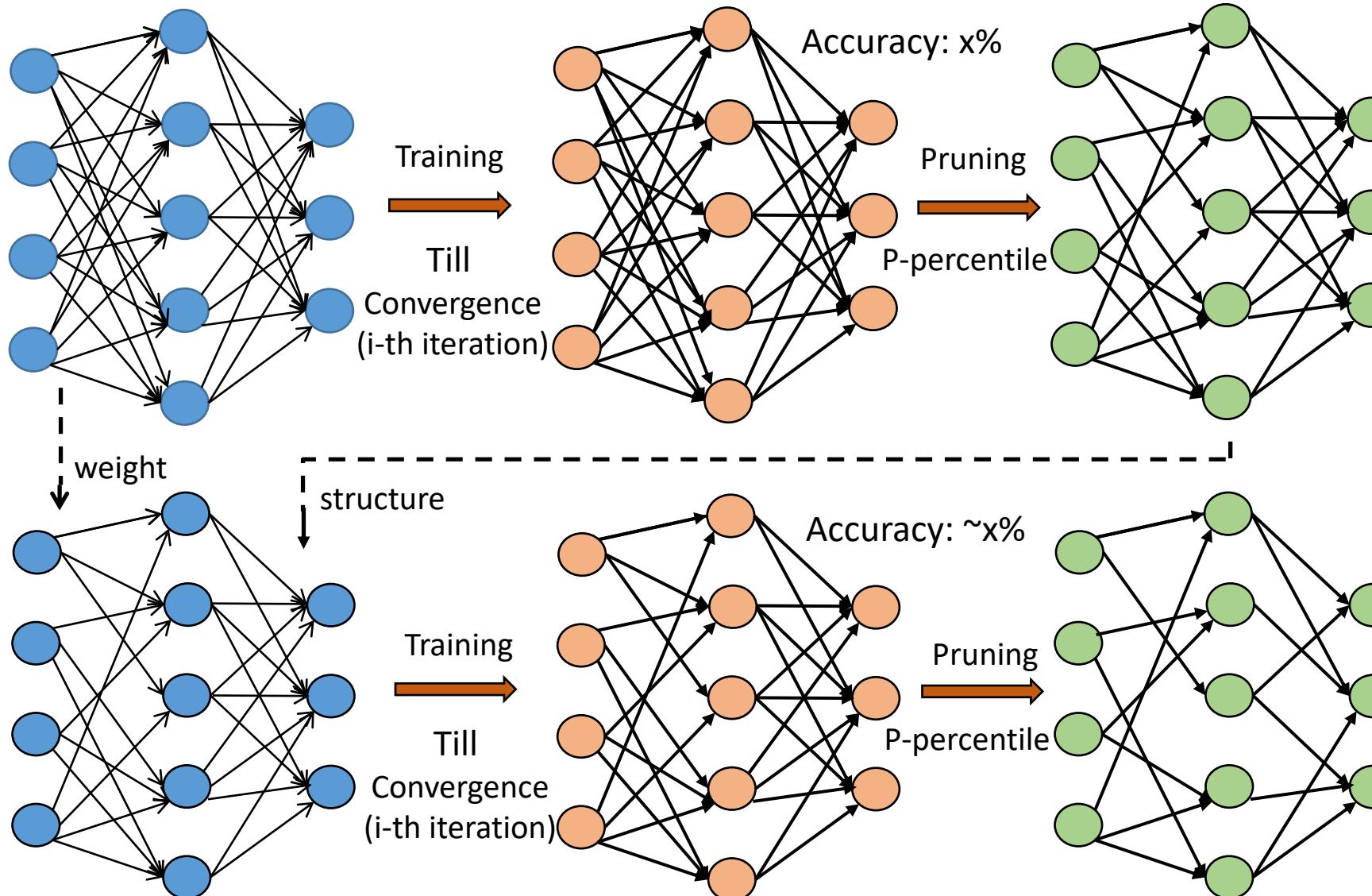
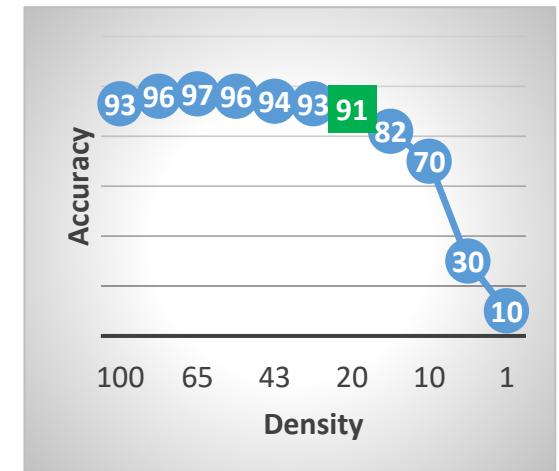
A Study on the Ramanujan Graph Property of Winning Lottery Tickets

Bithika Pal¹ Arindam Biswas² Sudeshna Kolay¹ Pabitra Mitra¹ Biswajit Basu³

ICML
International Conference
On Machine Learning

¹Indian Institute of Technology Kharagpur, ²University of Copenhagen, ³Trinity College Dublin

Lottery Ticket Hypothesis



Except **Density**,
what properties of the **Winning Tickets**
should be analyzed?

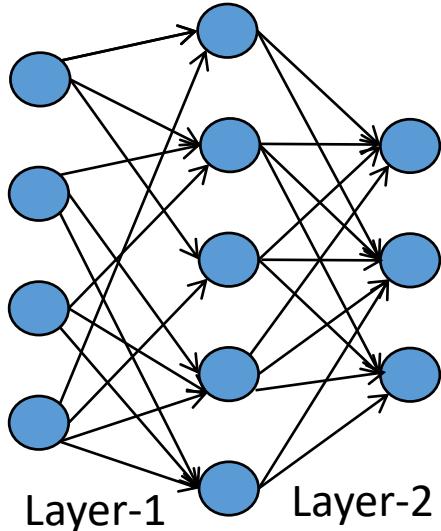
Connectivity of the network – free flow of
information from input to output

Expanders and Ramanujan Graphs

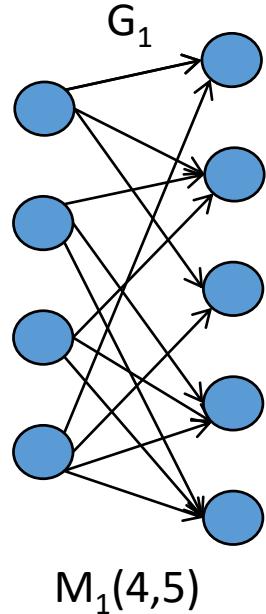
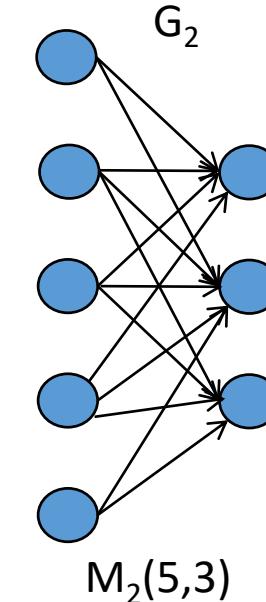
- Expanders are sparse, yet highly connected graphs
- Connectivity is measured by – **Cheeger Constant** $h(G)$ or rate of Expansion
$$h(G) := \min \left\{ \frac{|\partial A|}{|A|} : A \subseteq V(G), 0 < |A| \leq \frac{1}{2}|V(G)| \right\} \quad \partial A := \{\{x, y\} \in E(G) : x \in A, y \in V(G) \setminus A\}$$
- $h(G)$ is related with the **spectral gap** of the graph; A r -regular graph with n vertices having adjacency eigenvalues $-r \leq t_n \leq \dots \leq t_2 \leq t_1 = r$ satisfies the inequality $\frac{r-t_2}{2} \leq h(G) \leq 2\sqrt{r(r-t_2)}$
- We say that a sequence of regular graphs is an **expander family** if
 1. All the graphs have the same degree
 2. The number of vertices goes to infinity
 3. There exists a positive lower bound ϵ such that the expansion constant is always at least ϵ
- **Larger** values of $h(G)$ signify that the graph is **strongly connected**; However, spectral gap can not be arbitrarily large. For bounded-degree expander family it is **maximal** for **Ramanujan Graphs**
- **Ramanujan Graphs** : $t_2 \leq 2\sqrt{r-1} = 2\sqrt{t_1-1}$

Bipartite Graph Structure

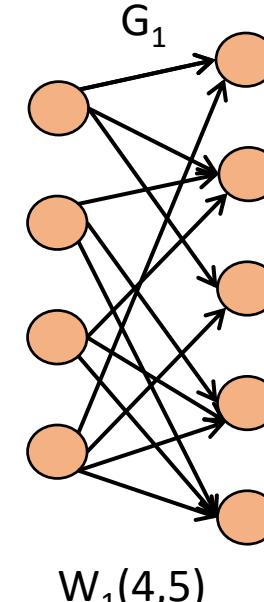
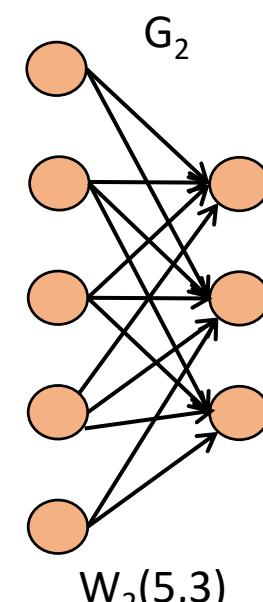
2-Layer Feed-Forward NN (pruned)



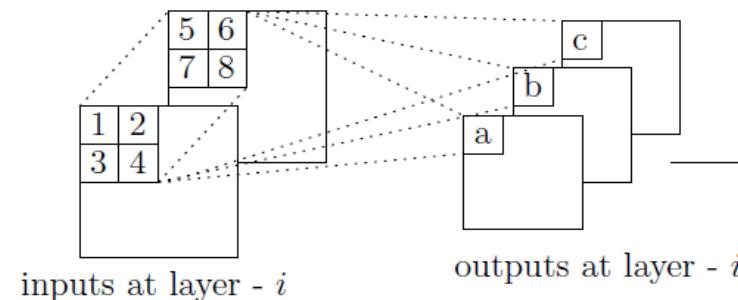
Unweighted Graphs – Masks



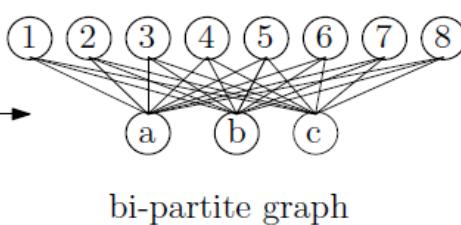
Weighted Graphs – Network weights



Example of a Convolution layer
with kernel size 2×2 , 2 input
channels and 3 output channels –
converted to a bipartite graph



outputs at layer - i

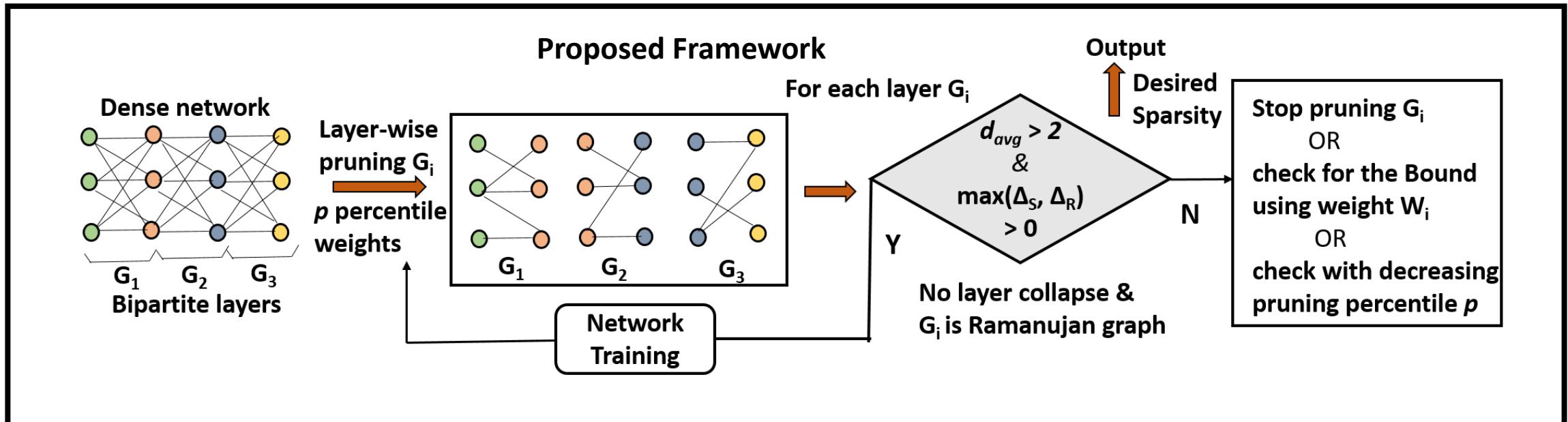


Proposed Framework

Table 1. Different bound criteria on the second largest eigenvalue t_2 of the bi-adjacency matrices

BI-ADJACENCY	EIGENVALUE (eb)	AVERAGE DEGREE (db)
Unweighted (M_i)	$t_2(M_i) \leq 2\sqrt{t_1(M_i) - 1}$	$t_2(M_i) \leq \sqrt{d_{avgL}(M_i) - 1} + \sqrt{d_{avgR}(M_i) - 1}$
Weighted (W_i)	$t_2(W_i) \leq 2\sqrt{t_1(W_i) - 1}$	
difference on bound	$\Delta_S = (2\sqrt{t_1 - 1} - t_2)/t_2$	$\Delta_R = (\sqrt{d_{avgL} - 1} + \sqrt{d_{avgR} - 1} - t_2)/t_2$

1. Degree is relaxed with average degree using the bounds from universal cover of the graph
2. More sharper estimate is used for Bipartite graph

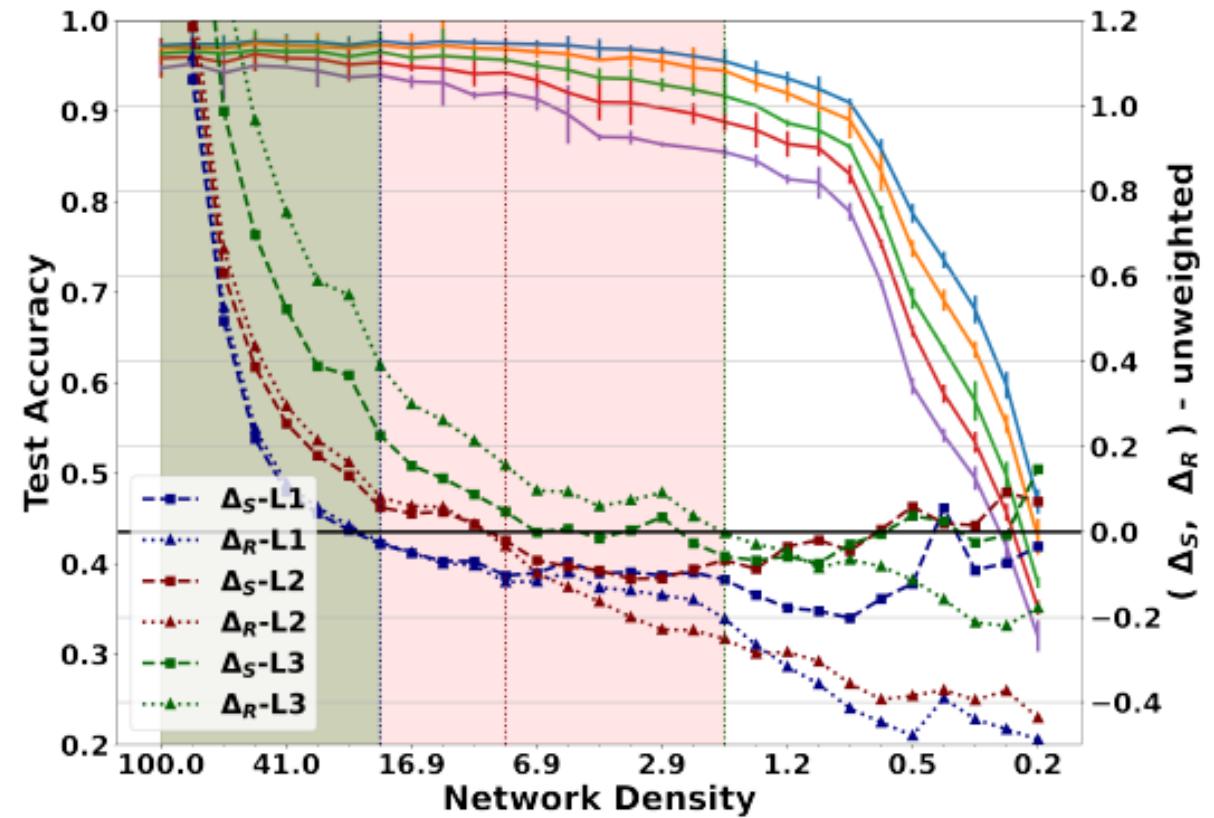


Experimental Results

- Dataset- MNIST, Architecture – Lenet

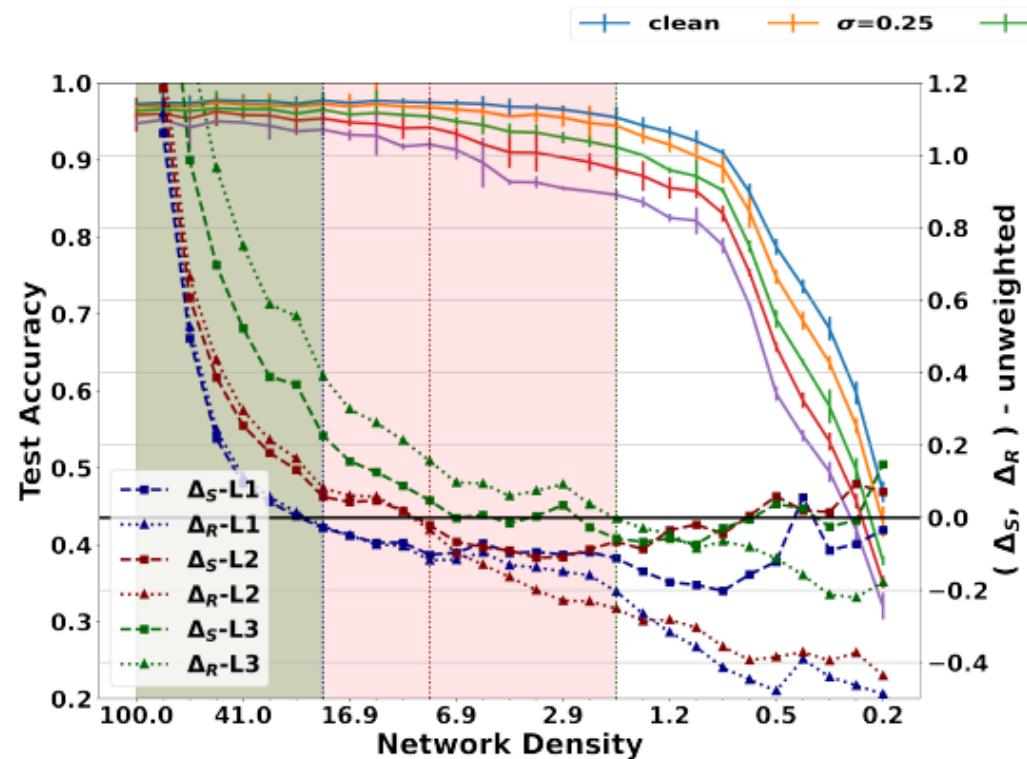
Input(784)	Bipartite graph size
L1 (300)	784 X 300
L2 (100)	300 X 100
L3 (10)	100 X 10

- Ramanujan property holds till $\text{Max}(\Delta_S, \Delta_R) > 0$
- Gray** shaded region – all the layers follow Ramanujan graph property
- Pink** shaded region – some of the layers follow Ramanujan Graph property
- White** region – None of the layers follows Ramanujan Graph property

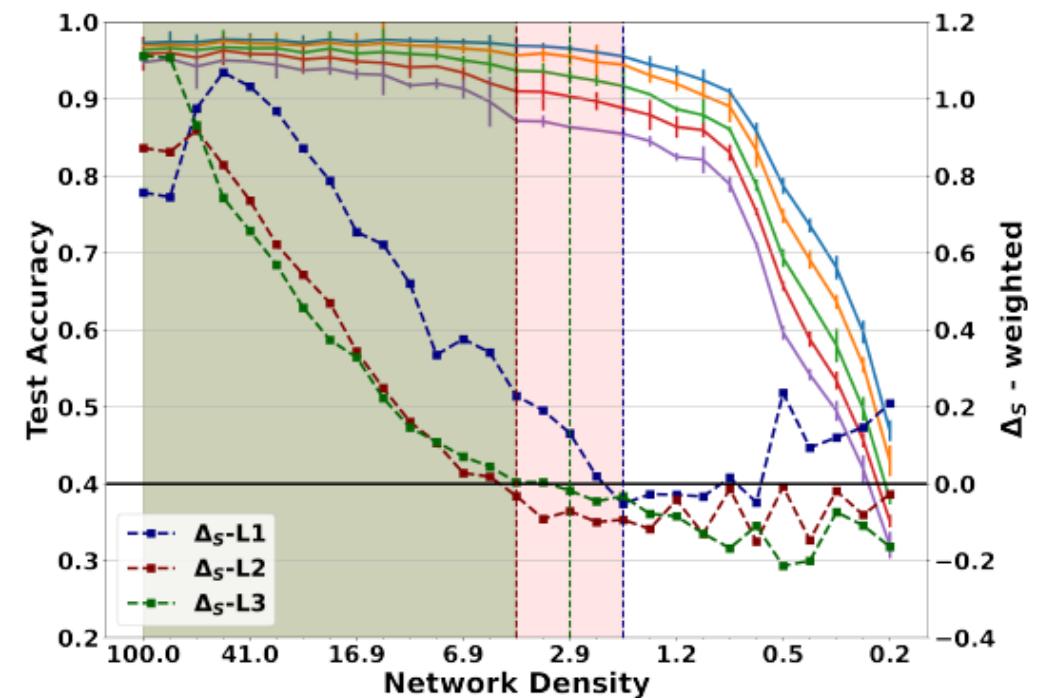


Unweighted Graph

Experimental Results



(a) unweighted graph representation

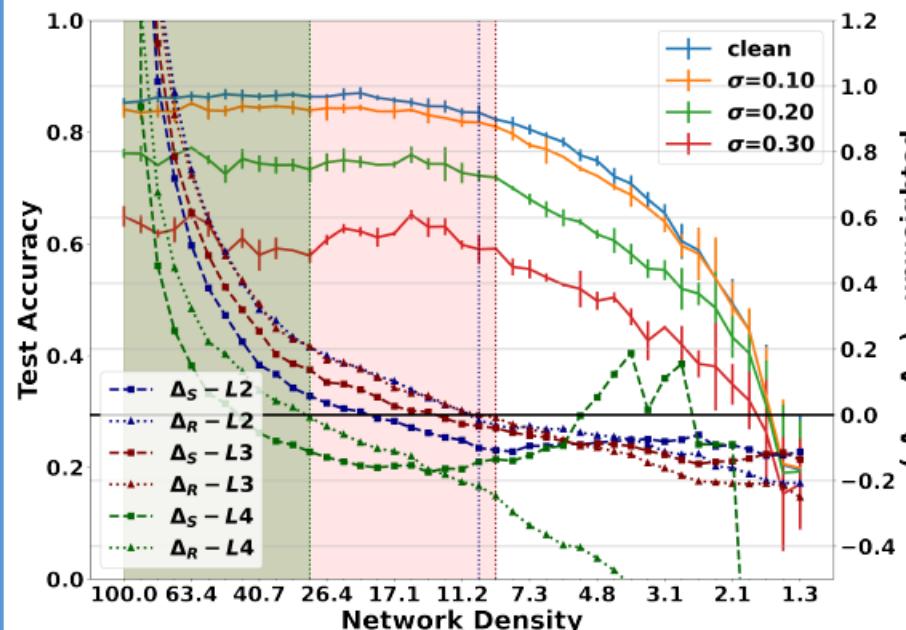


(b) weighted graph representation

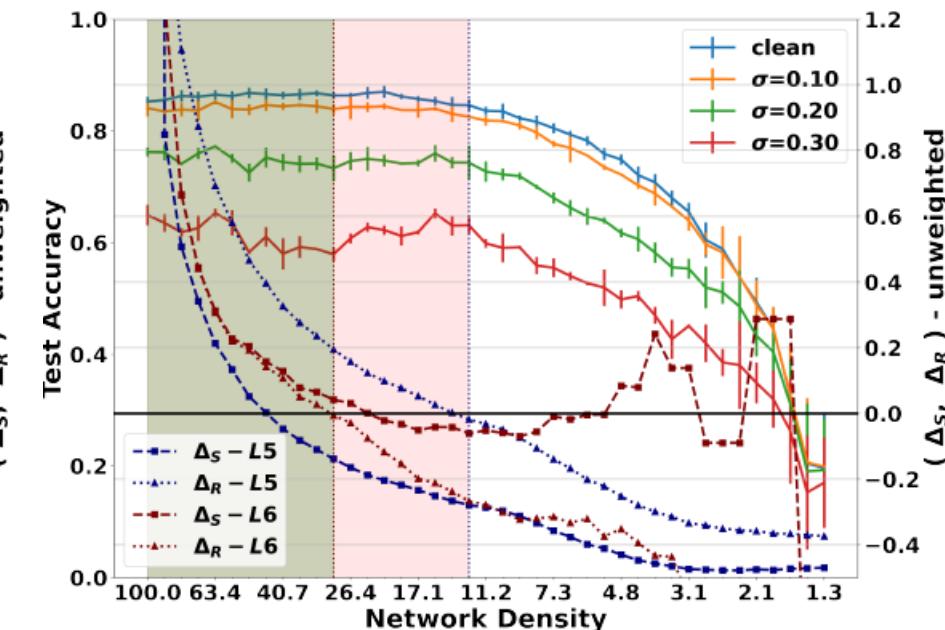
Experimental Results

- Dataset- CIFAR10, Architecture-Conv4 (Subnetwork of VGG19)

Input(3 x 32 x 32)	Bipartite graph size
Conv-L1 (64, 3, 3)	27 x 64
Conv-L2 (64, 3, 3)	576 x 64
Conv-L3 (128, 3, 3)	576 x 128
Conv-L4 (128, 3, 3)	1152 x 128
FC-L5 (256)	8192 x 256
FC-L6 (256)	256 x 256
FC-L7 (10)	256 x 10



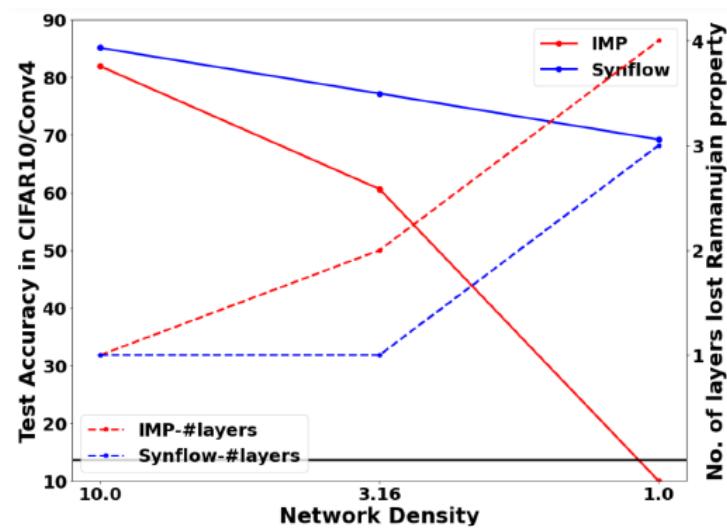
(a) Convolutional layers



(b) Fully-connected layers

Results on Algorithm Comparison

- Based on different pruning score calculation, three algorithms are chosen
 1. Iterative Magnitude Based Pruning (IMP)
 2. Single shot network pruning based on Connection Sensitivity (SNIP) (Lee et al., 2018)
 3. Synaptic flow based pruning (SynFlow) (Tanaka et al., 2020)
- #algoname- α : Target density ($10^{-\alpha} \times 100\%$) pruning
- Significant improvement in IMP in all the datasets



Pruning Algorithm	Lenet/MNIST		Conv4/CIFAR10	
	Density	Accuracy	Density	Accuracy
No Pruning	100.0	97.16	100.0	85.86
IMP-1.0	10.0	97.17	10.0	81.91
IMP-1.5	3.16	93.88	3.16	60.61
IMP-2.0	1.0	45.39	1.0	10
IMP-Bound	3.6	96.74	2.54	70.58
IMP*	3.6	95.07	2.54	28.13
SNIP-1.0	10.0	97.35	10.0	80.3
SNIP-1.5	3.16	79	3.16	72.95
SNIP-2.0	1.0	49.8	1.0	64.26
SNIP-Bound	7.64	95.41	2.24	72.06
SNIP*	7.64	95.18	2.24	68.7
SynFlow-1.0	10.0	97.22	10.0	82.5
SynFlow-1.5	3.16	95.92	3.16	77.18
SynFlow-2.0	1.0	49.11	1.0	69.2
SynFlow-Bound	1.33	93.82	1.01	69.34
SynFlow*	1.33	67.21	-	-

Without applying bound SynFlow can preserve Ramanujan Graph property in more number of layers than others

Conclusion

- Studied the validity of the lottery ticket hypothesis (LTH) using Ramanujan Graph.
- Three distinct regions demarcated using these bounds - test accuracy varies
- Proposed a layer-wise Ramanujan graph property preserving pruning scheme
- In future work, we will study the spectral approximation to generate more robust winning ticket preserving the Ramanujan graph property.

Thank You