A Study on the Ramanujan Graph Property
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Lottery Ticket Hypothesis
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Frankle, J. and Carbin, M. The lottery ticket hypothesis: Training pruned neural networks. In International Conference on Learning Representations (ICLR), 20189.



Except Density,
what properties of the Winning Tickets
should be analyzed?

Connectivity of the network — free flow of
Information from input to output



Expanders and Ramanujan Graphs

Expanders are sparse, yet highly connected graphs

Connectivity is measured by — Cheeger Constant h(G) or rate of Expansion

A
@) = min{% L ACV(G),0< |4 < §|V(G)|} 9A = {{z,} € E(Q) : z € A,y V(G)\ A}

h(G) is related with the spectral gap of the graph; A r-regular graph with n vertices having adjacency

eigenvalues —r < t, < ... < ty < t; = r satisfies the inequality 52 < h(G) < 2\/r(r — t2)

We say that a sequence of regular graphs is an expander family if

All the graphs have the same degree

The number of vertices goes to infinity

There exists a positive lower bound € such that the expansion constant is always at least €

Larger values of h(G) signify that the graph is strongly connected; However, spectral gap can not be
arbitrarily large. For bounded-degree expander family it is maximal for Ramanujan Graphs
Ramanujan Graphs : t, <2(r-1) = 2\(t,-1)

Hoory, S., Linial, N., and Wigderson, A. Expander graphs and their applications. Bull. Amer. Math. Soc. (N.S.), 43(4):439-561, 2006.



Bipartite Graph Structure

2-Layer Feed-Forward NN (pruned) Unweighted Graphs — Masks Weighted Graphs — Network weights
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Example of a Convolution layer :
with kernel size 2 x 2, 2 input —)) 2 P e B
channels and 3 output channels —
converted to a bipartite graph inputs at layer - i outputs at layer - i
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Proposed Framework

Table 1. Different bound criteria on the second largest eigenvalue £2 of the bi-adjacency matrices

BI-ADJACENCY EIGENVALUE (eb) AVERAGE DEGREE (db)
Unweighted (M) ta(M;) < 24/t1(M;) — 1 t2(M;) < \/dawer, (M) — 1+ \/dawgr(M;) — 1
Weighted (W) ta(W;) < 24/t (W) — 1

difference onbound Ag = (2v/f; — 1 —t2)/ta |Ar = (\/davgr, — 1 + \/dawvgr — 1 — t2) /2

1. Degree is relaxed with average degree using the bounds from universal cover of the graph
2. More sharper estimate is used for Bipartite graph

Proposed Framework Output
For each layer G, I Desired :
Dense network Layer-wise Sparsity | Stop pruning G;
i o—©O OR
pruning G.
—' check for the Bound
p percentile : using weight W,
weights OR
G G, G; G, G, G; check with decreasing
Bipartite layers ch layer collzi\pse & pruning percentile p
f Network ] G, is Ramanujan graph
| Training |

Hoory, S. A lower bound on the spectral radius of the universal cover of a graph. J. Combin. Theory Ser. B, 93(1):33—43, 2005.
Marcus, A.W., Spielman, D. A., and Srivastava, N. Interlacing families I: Bipartite Ramanujan graphs of all degrees. Ann. of Math. (2), 182(1):307-325, 2015.



Experimental Results

* Dataset- MNIST, Architecture — Lenet
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Experimental Results
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Experimental Results

» Dataset- CIFAR10, Architecture-Conv4 (Subnetwork of VGG19)
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Results on Algorithm Comparison
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* Based on different pruning score calculation, three Pruning Lenet/MNIST Conv4/CIFARI0
algorithms are chosen Algorithm Density Accuracy | Density Accuracy

. . ) No Pruning 100.0 97.16 100.0 85.86
1. Iterative Magnitude Based Pruning (IMP) TMP-1.0 0.0 97 17 0.0 2101

2. Single shot network pruning based on Connection IMP-1.5 3.16 03.88 316 60.61
Sensitivity (SN|P) (Lee et al., 2018) IMP-2.0 1.0 45.39 1.0

3. Synaptic flow based pruning (SynFlow) (Tanaka et al., 2020) IMP-Bound 3.6 96.74 70.58
IMP* 3.6 95.07 28.13
_ ] SNIP-1.0 10.0 97.35
e #algoname-a : Target density (10 x 100% ) pruning SNIP-1.5 3.16 79

* Significant improvement in IMP in all the datasets SNIP-2.0 1.0 49.8 1.0 64.26
SNIP-Bound 7.64 95.41 2.24 72.06
SNIP#* /.64 95.18 2.24 68.7
SynFlow-1.0 10.0 97.22 10.0 82.5
SynFlow-1.5 3.16 95.92
SynFlow-2.0 1.0 49.11

SynFlow-Bound 1.33 93.82
SynFlow* 1.33 67.21

Without applying bound SynFlow can preserve Ramanujan
Graph property in more number of layers than others
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Lee, N., Ajanthan, T., and Torr, P. H. Snip: Single-shot network pruning based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018. 10
Tanaka, H., Kunin, D., Yamins, D. L., and Ganguli, S. Pruning neural networks without any data by iteratively conserving synaptic flow. arXiv preprint arXiv:2006.05467, 2020.



Conclusion

» Studied the validity of the lottery ticket hypothesis (LTH) using Ramanujan Graph.
* Three distinct regions demarcated using these bounds - test accuracy varies
* Proposed a layer-wise Ramanujan graph property preserving pruning scheme

* In future work, we will study the spectral approximation to generate more robust
winning ticket preserving the Ramanujan graph property.
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