Learning from Counterfactual Links for Link Prediction Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, Meng Jiang University of Notre Dame #### Link Prediction **Given:** a graph with adjacency matrix $\mathbf{A} \in \{0,1\}^{N \times N}$, raw node features $\mathbf{X} \in \mathbb{R}^{N \times F}$, and binary treatments $\mathbf{T} \in \{0,1\}^{N \times N}$ for each node pair. **Learn:** low-dimensional node representations $\mathbf{Z} \in \mathbb{R}^{N \times H}$, which can be used for the prediction of link existences. ## Counterfactual Outcomes to Balance Training Data - Counterfactual question: - Would Alice and Adam still be friends if they were not living in the same neighborhood? ## Counterfactual Outcomes to Balance Training Data #### Counterfactual question: Would Alice and Adam still be friends if they were not living in the same neighborhood? #### • Idea: • Generate counterfactual links to help the model learn better node representations for link prediction. #### Counterfactual Links Factual link: 1 Counterfactual link: 1 ## Learning from Counterfactual Links Our proposed CFLP learns from both observed and counterfactual link existences. ## Results 1 | | CORA | CITESEER | PUBMED | FACEBOOK | OGB-ddi | | | | | | |---|-------------------------|--------------------|------------------|--------------------|--------------------|--|--|--|--|--| | Node2Vec | 49.96±2.51 | 47.78 ± 1.72 | 39.19±1.02 | 24.24±3.02 | 23.26±2.09 | | | | | | | MVGRL | 19.53 ± 2.64 | 14.07 ± 0.79 | 14.19 ± 0.85 | 14.43 ± 0.33 | 10.02 ± 1.01 | | | | | | | VGAE | 45.91 ± 3.38 | 44.04 ± 4.86 | 23.73 ± 1.61 | 37.01 ± 0.63 | 11.71 ± 1.96 | | | | | | | SEAL | 51.35 ± 2.26 | 40.90 ± 3.68 | 28.45 ± 3.81 | 40.89 ± 5.70 | 30.56 ± 3.86 | | | | | | | LGLP | 62.98 ± 0.56 | 57.43 ± 3.71 | _ | 37.86 ± 2.13 | _ | | | | | | | GCN | 49.06 ± 1.72 | 55.56 ± 1.32 | 21.84 ± 3.87 | 53.89 ± 2.14 | 37.07 ± 5.07 | | | | | | | GSAGE | 53.54 ± 2.96 | 53.67 ± 2.94 | 39.13 ± 4.41 | 45.51 ± 3.22 | 53.90 ± 4.74 | | | | | | | JKNet | 48.21 ± 3.86 | 55.60 ± 2.17 | 25.64 ± 4.11 | 52.25 ± 1.48 | 60.56 ± 8.69 | | | | | | | Our proposed CFLP with different graph encoders | | | | | | | | | | | | CFLP w/ GCN | 60.34 ± 2.33 | 59.45 ± 2.30 | 34.12 ± 2.72 | 53.95 ± 2.29 | 52.51 ± 1.09 | | | | | | | CFLP w/ GSAGE | 57.33 ± 1.73 | 53.05 ± 2.07 | 43.07 ± 2.36 | 47.28 ± 3.00 | 75.49 ± 4.33 | | | | | | | CFLP w/ JKNet | 65.57 \pm 1.05 | 68.09 ±1.49 | 44.90 ± 2.00 | 55.22 ±1.29 | 86.08 ±1.98 | | | | | | Consistent improvement against baselines. #### Results 2 Get Started Updates Large-Scale Challenge → Datasets → Leaderboards → Paper Team Github #### Leaderboard for ogbl-ddi The Hits@20 score on the test and validation sets. The higher, the better. Package: >=1.2.1 | Rank | Method | Ext.
data | Test
Hits@20 | Validation
Hits@20 | Contact | References | #Params | Hardware | Date | |------|-----------------------|--------------|--------------------|-----------------------|---------------------------------|----------------|-----------|-----------------------------------|-----------------| | 1 | PLNLP | No | 0.9088 ±
0.0313 | 0.8242 ±
0.0253 | Zhitao Wang
(WeChat@Tencent) | Paper,
Code | 3,497,473 | Tesla-P40(24GB
GPU) | Dec 7,
2021 | | 2 | GraphSAGE + Edge Attr | No | 0.8781 ±
0.0474 | 0.8044 ±
0.0404 | Jing Yang | Paper,
Code | 3,761,665 | Tesla V100 (32GB) | Aug 9,
2021 | | 3 | CFLP (w/ JKNet) | No | 0.8608 ±
0.0198 | 0.8405 ±
0.0284 | Tong Zhao | Paper,
Code | 837,635 | GeForce RTX 2080
Ti (11GB GPU) | Nov 17,
2021 | # Thank you for listening! - Feel free to email me at - <u>tzhao2@nd.edu</u> (school) - tzhao@snap.com (work)