# Learning from Counterfactual Links for Link Prediction

Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, Meng Jiang University of Notre Dame





#### Link Prediction

**Given:** a graph with adjacency matrix  $\mathbf{A} \in \{0,1\}^{N \times N}$ , raw node features  $\mathbf{X} \in \mathbb{R}^{N \times F}$ , and binary treatments  $\mathbf{T} \in \{0,1\}^{N \times N}$  for each node pair.

**Learn:** low-dimensional node representations  $\mathbf{Z} \in \mathbb{R}^{N \times H}$ , which can be used for the prediction of link existences.





## Counterfactual Outcomes to Balance Training Data

- Counterfactual question:
  - Would Alice and Adam still be friends if they were not living in the same neighborhood?





## Counterfactual Outcomes to Balance Training Data

#### Counterfactual question:

 Would Alice and Adam still be friends if they were not living in the same neighborhood?

#### • Idea:

• Generate counterfactual links to help the model learn better node representations for link prediction.





#### Counterfactual Links



Factual link: 1 Counterfactual link: 1



## Learning from Counterfactual Links



Our proposed CFLP learns from both observed and counterfactual link existences.



## Results 1

|                                                 | CORA                    | CITESEER           | PUBMED           | FACEBOOK           | OGB-ddi            |  |  |  |  |  |
|-------------------------------------------------|-------------------------|--------------------|------------------|--------------------|--------------------|--|--|--|--|--|
| Node2Vec                                        | 49.96±2.51              | $47.78 \pm 1.72$   | 39.19±1.02       | 24.24±3.02         | 23.26±2.09         |  |  |  |  |  |
| MVGRL                                           | $19.53 \pm 2.64$        | $14.07 \pm 0.79$   | $14.19 \pm 0.85$ | $14.43 \pm 0.33$   | $10.02 \pm 1.01$   |  |  |  |  |  |
| VGAE                                            | $45.91\pm3.38$          | $44.04 \pm 4.86$   | $23.73 \pm 1.61$ | $37.01 \pm 0.63$   | $11.71 \pm 1.96$   |  |  |  |  |  |
| SEAL                                            | $51.35 \pm 2.26$        | $40.90 \pm 3.68$   | $28.45 \pm 3.81$ | $40.89 \pm 5.70$   | $30.56 \pm 3.86$   |  |  |  |  |  |
| LGLP                                            | $62.98 \pm 0.56$        | $57.43 \pm 3.71$   | _                | $37.86 \pm 2.13$   | _                  |  |  |  |  |  |
| GCN                                             | $49.06 \pm 1.72$        | $55.56 \pm 1.32$   | $21.84 \pm 3.87$ | $53.89 \pm 2.14$   | $37.07 \pm 5.07$   |  |  |  |  |  |
| GSAGE                                           | $53.54 \pm 2.96$        | $53.67 \pm 2.94$   | $39.13 \pm 4.41$ | $45.51 \pm 3.22$   | $53.90 \pm 4.74$   |  |  |  |  |  |
| JKNet                                           | $48.21 \pm 3.86$        | $55.60\pm2.17$     | $25.64 \pm 4.11$ | $52.25 \pm 1.48$   | $60.56 \pm 8.69$   |  |  |  |  |  |
| Our proposed CFLP with different graph encoders |                         |                    |                  |                    |                    |  |  |  |  |  |
| CFLP w/ GCN                                     | $60.34 \pm 2.33$        | $59.45 \pm 2.30$   | $34.12\pm2.72$   | $53.95 \pm 2.29$   | $52.51 \pm 1.09$   |  |  |  |  |  |
| CFLP w/ GSAGE                                   | $57.33 \pm 1.73$        | $53.05 \pm 2.07$   | $43.07 \pm 2.36$ | $47.28 \pm 3.00$   | $75.49 \pm 4.33$   |  |  |  |  |  |
| CFLP w/ JKNet                                   | <b>65.57</b> $\pm$ 1.05 | <b>68.09</b> ±1.49 | $44.90 \pm 2.00$ | <b>55.22</b> ±1.29 | <b>86.08</b> ±1.98 |  |  |  |  |  |

Consistent improvement against baselines.



#### Results 2



Get Started Updates Large-Scale Challenge → Datasets → Leaderboards → Paper Team Github

#### Leaderboard for ogbl-ddi

The Hits@20 score on the test and validation sets. The higher, the better.

Package: >=1.2.1

| Rank | Method                | Ext.<br>data | Test<br>Hits@20    | Validation<br>Hits@20 | Contact                         | References     | #Params   | Hardware                          | Date            |
|------|-----------------------|--------------|--------------------|-----------------------|---------------------------------|----------------|-----------|-----------------------------------|-----------------|
| 1    | PLNLP                 | No           | 0.9088 ±<br>0.0313 | 0.8242 ±<br>0.0253    | Zhitao Wang<br>(WeChat@Tencent) | Paper,<br>Code | 3,497,473 | Tesla-P40(24GB<br>GPU)            | Dec 7,<br>2021  |
| 2    | GraphSAGE + Edge Attr | No           | 0.8781 ±<br>0.0474 | 0.8044 ±<br>0.0404    | Jing Yang                       | Paper,<br>Code | 3,761,665 | Tesla V100 (32GB)                 | Aug 9,<br>2021  |
| 3    | CFLP (w/ JKNet)       | No           | 0.8608 ±<br>0.0198 | 0.8405 ±<br>0.0284    | Tong Zhao                       | Paper,<br>Code | 837,635   | GeForce RTX 2080<br>Ti (11GB GPU) | Nov 17,<br>2021 |



# Thank you for listening!

- Feel free to email me at
  - <u>tzhao2@nd.edu</u> (school)
  - tzhao@snap.com (work)



