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Modern AI model applications
Machine Translation Autonomous Driving

Intelligent AgentSpeech Recognition



Challenges
• AI models are 

over-parameterized and 
resource hungry

• Limit computational 
power and resource on 
deployed devices

• Inference-sensitive 
applications



Solutions • Increase resource capacity
• Model compression: network pruning

Fig 2. Chen, Liyang et al. (2021). Knowledge from the original network: restore 
a better pruned network with knowledge distillation. 



SoTA pruning method
Traditional methods
• Labor-costly
• Expertise knowledge required for a 

specific task
RL-based methods
• Manually design vectors to represent 

DNN’s hidden layer.
• Rigid RL environment.



Background & Motivation
DNNs are essentially computational graph
Every pruning causing topology changes
Learn pruning policy from DNN’s topology

Fig 1.Illustrate of network pruning. Raziel Alvarez et al. 
https://blog.tensorflow.org/2019/05/tf-model-optimization
-toolkit-pruning-API.html

Computational graph topology changes → Leverage GNN to 
perceive the topology changes → Use RL agent to optimize 
pruning policy



Objective
• Model DNN as a graph
• Use Graph Neural network to learn DNN 

representation
• Construct RL environment



Modeling hierarchical computational graph
• DNNs are essentially computational graphs.
• DNNs often contains various patterns (a.k.a. 

motifs).
• Motifs (such as conv 3x3) repeated throughout the 

network topology.
• Repeated Motifs have same topology.



Modeling hierarchical computational graph
• Plain computational graph are huge Memory explosion

• A computational graph with motifs (the sub-graph 
painted red, blue, and green). 

• Embed it hierarchically



Modeling hierarchical computational graph
• Example



Multi-stage graph embedding
• Motifs have same topology, embedding motif first.
• (b) We extract motifs from G and split the G into 2 

hierarchical levels.
• (c) The edges in G correspond to motifs at level-1.



Multi-stage graph embedding (m-GNN)

 



Reinforcement Learning Environment
Environment states
• DNN’s computational graph representation

Action space
• Pruning policy

Reward
• Pruned model’s performance

Episode exit
• Target model size

RL Policy
• PPO

Fig 1. Amiri et al. (2018). A Machine Learning Approach for Power Allocation in 
HetNets Considering QoS.  



GNN-RL Overview



Pruning Results – CIFAR-10/100

Model Dataset FLOPs↓ Top-1 Acc. % 𝚫Acc. %

ResNet-100 CIFAR-10 52% 94.31 +0.63

ResNet-56 CIFAR-10 54% 93.49 +0.10

ResNet-32 CIFAR-10 51% 92.58 -0.05

ResNet-20 CIFAR-10 51% 91.31 -0.42

ShuffleNet-V1 CIFAR-100 42% 67.10 -2.84

ShuffleNet-V2 CIFAR-100 46% 66.64 -2.21



Pruning Results – ImageNet

GNN-RL achieves comparable results with SoTA!

Model Dataset FLOPs↓ Top-1 Acc. % 𝚫Acc. %

VGG-16 ImageNet 80% 70.99 +0.49

ResNet-18 ImageNet 51% 68.66 -1.10

ResNet-50 ImageNet 53% 74.28 -1.82

MobileNet-V1 ImageNet 60% 69.50 -1.40

MobileNet-V2 ImageNet 42% 70.04 -1.83



Topology transfer
• GNN-RL trained on a 

topology can be transferred 
to another topology.

• We train GNN-RL on 
ResNet-56 then transfer it to 
ResNet-44

• Topology transfer offers a 
rapid pruning process (1.12X 
faster for each round) with 
much less computing time



Extension
GNN-RL is not limited on Model compression.
You can customize GNN-RL by define your customized 
RL task (e.g., action space, environment states, 
rewards). 
Currently, our colleagues are testing GNN-RL on job 
scheduling task.



Extension -- m-GNN
Multi-stage graph embedding
Protein molecular



Thank you!


