Do Differentiable Simulators Give Better Policy Gradients?

H.J. Terry Suh, Max Simchowitz, Kaiqing Zhang, Russ Tedrake

ICML 2022 Long Talk Presentation

Motivation. Policy Optimization for Physical Systems

Success of Policy Optimization for Robotics

- 1. Collect data in simulation, run zero-order policy optimization (e.g. PPO)
- 2. Impressive results in manipulation, locomotion.

^[1] OpenAI, "Solving Rubik's Cube with a Robot Hand"

[2] T. Miki et al., "Learning robust perceptive locomotion for quadrupedal robots in the wild".

Motivation. Policy Optimization for Physical Systems

Success of Policy Optimization for Robotics

- 1. Collect data in simulation, run zero-order policy optimization (e.g. PPO)
- 2. Impressive results in manipulation, locomotion.

Still Leaves Much to be Desired.

- 1. Incredibly data hungry. Need many samples / time to train a policy.
- 2. We know structure for these systems. The fact that we cannot do better than blackbox optimization algorithms is both theoretically / practically unsatisfying.

- [1] OpenAI, "Solving Rubik's Cube with a Robot Hand"
- [2] T. Miki et al., "Learning robust perceptive locomotion for quadrupedal robots in the wild".

Motivation. Policy Optimization for Physical Systems

Success of Policy Optimization for Robotics

- 1. Collect data in simulation, run zero-order policy optimization (e.g. PPO)
- 2. Impressive results in manipulation, locomotion.

Still Leaves Much to be Desired.

- 1. Incredibly data hungry. Need many samples / time to train a policy.
- 2. We know structure for these systems. The fact that we cannot do better than blackbox optimization algorithms is both theoretically / practically unsatisfying.

Can we do better by leveraging model structure for robotics?

[1] OpenAI, "Solving Rubik's Cube with a Robot Hand"

[2] T. Miki et al., "Learning robust perceptive locomotion for quadrupedal robots in the wild".

Motivation. Differentiable Simulation

Can we do better by leveraging model structure for robotics?

Yes, let's make our models differentiable and use first-order gradients.

ADD: Analytically Differentiable Dynamics for Multi-Body Systems with Frictional Contact

DIFFTAICHI: DIFFERENTIABLE PROGRAMMING FOR PHYSICAL SIMULATION

The Pinocchio C++ library

A fast and flexible implementation of rigid body dynamics algorithms and their analytical derivatives

Dojo: A Differentiable Simulator for Robotics

Interactive Differentiable Simulation

ChainQueen: A Real-Time Differentiable Physical Simulator for Soft Robotics

Differentiable Cloth Simulation for Inverse Problems

Brax - A Differentiable Physics Engine for Large Scale Rigid Body Simulation Fast and Feature-Complete Differentiable Physics for Articulated Rigid Bodies with Contact

End-to-End Differentiable Physics for Learning and Control

Deluca – A Differentiable Control Library: Environments, Methods, and Benchmarking

Differentiable simulation for physical system identification

Motivation. Differentiable Simulation

Can we do better by leveraging model structure for robotics?

Yes, let's make our models differentiable and use first-order gradients.

ADD: Analytically Differentiable Dynamics for Multi-Body Systems with Frictional Contact	Interactive Differentiable Simulation	Fast and Feature-Complete Differentiable Physics for Articulated Rigid Bodies with Contact
DIFFTAICHI: DIFFERENTIABLE PROGRAMMING FOR PHYSICAL SIMULATION	ChainQueen: A Real-Time Differentiable Physical Simulator for Soft Robotics	End-to-End Differentiable Physics for Learning and Control
The Pinocchio C++ library A fast and flexible implementation of rigid body dynamics algorithms and their analytical derivatives	Differentiable Cloth Simulation for Inverse Problems	Deluca – A Differentiable Control Library: Environments, Methods, and Benchmarking
Dojo: A Differentiable Simulator for Robotics	Brax - A Differentiable Physics Engine for Large Scale Rigid Body Simulation	Differentiable simulation for physical system identification

If we have access to autodiff gradients for physics simulation, is it better to use them for policy search?

Are there pathologies where using these gradients actually hurt?

Stochastic First vs. Zeroth-Order Optimization (Additive Gaussian Noise)

$$\min_{\theta} F(\theta) = \min_{\theta} \mathbb{E}_{w \sim \mathcal{N}(w; 0, \sigma^2 I)} f(\theta + w)$$

Stochastic First vs. Zeroth-Order Optimization (Additive Gaussian Noise)

$$\min_{\theta} F(\theta) = \min_{\theta} \mathbb{E}_{w \sim \mathcal{N}(w; 0, \sigma^2 I)} f(\theta + w)$$

ZoBG

Zero-Order Batch Gradient

REINFORCE Likelihood Ratio Score Function

$$\nabla_{\theta} \mathbb{E}_{w} f(\theta + w) = \frac{1}{\sigma^{2}} \mathbb{E}_{w} f(\theta + w) w$$
$$\approx \frac{1}{N} \sum_{i=1}^{N} f(\theta + w_{i}) w_{i}$$

Stochastic First vs. Zeroth-Order Optimization (Additive Gaussian Noise)

$$\min_{\theta} F(\theta) = \min_{\theta} \mathbb{E}_{w \sim \mathcal{N}(w; 0, \sigma^2 I)} f(\theta + w)$$

ZoBG

Zero-Order Batch Gradient

REINFORCE Likelihood Ratio Score Function

FoBG

First-Order Batch Gradient

Reparametrization
Pathwise Derivative
Backpropagation through Time

$$\nabla_{\theta} \mathbb{E}_{w} f(\theta + w) = \frac{1}{\sigma^{2}} \mathbb{E}_{w} f(\theta + w) w$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} f(\theta + w_{i}) w_{i}$$

$$\nabla_{\theta} \mathbb{E}_{w} f(\theta + w) = \mathbb{E}_{w} \nabla_{\theta} f(\theta + w)$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} f(\theta + w_{i})$$

Stochastic First vs. Zeroth-Order Optimization (Additive Gaussian Noise)

$$\min_{\theta} F(\theta) = \min_{\theta} \mathbb{E}_{w \sim \mathcal{N}(w; 0, \sigma^2 I)} f(\theta + w)$$

ZoBG

Zero-Order Batch Gradient

REINFORCE Likelihood Ratio Score Function

FoBG

First-Order Batch Gradient

Reparametrization
Pathwise Derivative
Backpropagation through Time

$$\nabla_{\theta} \mathbb{E}_{w} f(\theta + w) = \frac{1}{\sigma^{2}} \mathbb{E}_{w} f(\theta + w) w$$
$$\approx \frac{1}{N} \sum_{i=1}^{N} f(\theta + w_{i}) w_{i}$$

$$\nabla_{\theta} \mathbb{E}_{w} f(\theta + w) = \mathbb{E}_{w} \nabla_{\theta} f(\theta + w)$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} f(\theta + w_{i})$$

Lessons from Stochastic Optimization

- 1. The two gradients converge to the same quantity under sufficient regularity conditions.
- 2. Convergence rate scales directly with variance of the estimators, ZoBG often has higher variance.

Lessons from Stochastic Optimization

- 1. The two gradients converge to the same quantity under sufficient regularity conditions. But the regularity conditions can be broken, leading to a biased FoBG.
- 2. Convergence rate scales directly with variance of the estimators, ZoBG often has higher variance. Often, but not always.

Lessons from Stochastic Optimization

- 1. The two gradients converge to the same quantity under sufficient regularity conditions. But the regularity conditions can be broken, leading to a biased FoBG.
- 2. Convergence rate scales directly with variance of the estimators, ZoBG often has higher variance. Often, but not always.

FoBG can be biased for discontinuous (not locally Lipschitz) landscapes!

Lessons from Stochastic Optimization

- The two gradients converge to the same quantity under sufficient regularity conditions.
 But the regularity conditions can be broken, leading to a biased FoBG.
- 2. Convergence rate scales directly with variance of the estimators, ZoBG often has higher variance. Often, but not always.

FoBG can be biased for discontinuous (not locally Lipschitz) landscapes!

Illustrated best by sampling from a Heaviside.

$$f(\boldsymbol{\theta}, \mathbf{w}) = H(\boldsymbol{\theta} + \mathbf{w}), \quad H(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$$

$$F(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{w}}[H(\boldsymbol{\theta} + \mathbf{w})] = \operatorname{erf}(-\boldsymbol{\theta}; \sigma^2),$$

Lessons from Stochastic Optimization

- The two gradients converge to the same quantity under sufficient regularity conditions.
 But the regularity conditions can be broken, leading to a biased FoBG.
- Convergence rate scales directly with variance of the estimators, ZoBG often has higher variance.Often, but not always.

FoBG can be biased for discontinuous (not locally Lipschitz) landscapes!

Illustrated best by sampling from a Heaviside.

$$f(\boldsymbol{\theta}, \mathbf{w}) = H(\boldsymbol{\theta} + \mathbf{w}), \quad H(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases},$$

$$F(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{w}}[H(\boldsymbol{\theta} + \mathbf{w})] = \operatorname{erf}(-\boldsymbol{\theta}; \sigma^2),$$

Note that since samples of first-order gradients are identically zero,

- The FoBG is zero, while the gradient of stochastic objective is non-zero everywhere.
- The empirical variance of the FoBG is also zero.

The Pathologies of FoBG: Discontinuities

FoBG can be biased for discontinuous (not locally Lipschitz) landscapes!

Illustrated best by sampling from a Heaviside.

$$f(\boldsymbol{\theta}, \mathbf{w}) = H(\boldsymbol{\theta} + \mathbf{w}), \quad H(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$$

$$F(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{w}}[H(\boldsymbol{\theta} + \mathbf{w})] = \operatorname{erf}(-\boldsymbol{\theta}; \sigma^2),$$

Not just a pathology, but common in physical systems involving contact.

- 1. Discontinuities caused by geometry (non-smooth surfaces, discontinuous normal).
- 2. Discontinuities caused by friction and tangential velocities.
- 3. Discontinuities caused by impacts.

The Pathologies of FoBG: Discontinuities

FoBG can be biased for discontinuous (not locally Lipschitz) landscapes!

Illustrated best by sampling from a Heaviside.

$$f(\boldsymbol{\theta}, \mathbf{w}) = H(\boldsymbol{\theta} + \mathbf{w}), \quad H(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$$

$$F(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{w}}[H(\boldsymbol{\theta} + \mathbf{w})] = \operatorname{erf}(-\boldsymbol{\theta}; \sigma^2),$$

Not just a pathology, but common in physical systems involving contact.

- 1. Discontinuities caused by geometry (non-smooth surfaces, discontinuous normal).
- 2. Discontinuities caused by friction and tangential velocities.
- 3. Discontinuities caused by impacts.

Perhaps the strictness of the discontinuity is a modeling decision, what if we soften it?

The Pathologies of FoBG: Empirical Bias

Empirical Bias: Continuous yet stiff Approximations of Discontinuities Look like Strict Discontinuities in the finite-sample regime.

$$\bar{H}_{\nu}(t) = \begin{cases} 2t/\nu & \text{if } |t| \le \nu/2 \\ H(t) & \text{else} \end{cases}$$

The Pathologies of FoBG: Empirical Bias

Empirical Bias: Continuous yet stiff Approximations of Discontinuities Look like Strict Discontinuities in the finite-sample regime.

$$\bar{H}_{\nu}(t) = \begin{cases} 2t/\nu & \text{if } |t| \le \nu/2 \\ H(t) & \text{else} \end{cases}$$

- 1. Gradient of stiff approximations take high value with low probability
- In finite-sample regime, there is no way to distinguish between strict discontinuity and its stiff continuous relaxations.

Lessons from Stochastic Optimization

- 1. The two gradients converge to the same quantity under sufficient regularity conditions. But the regularity conditions can be broken, leading to a biased FoBG.
- 2. Convergence rate scales directly with variance of the estimators, ZoBG often has higher variance. Often, but not always.

Lessons from Stochastic Optimization

- 1. The two gradients converge to the same quantity under sufficient regularity conditions. But the regularity conditions can be broken, leading to a biased FoBG.
- 2. Convergence rate scales directly with variance of the estimators, ZoBG often has higher variance. Often, but not always.

ZoBG

Zero-Order Batch Gradient

REINFORCE Likelihood Ratio Score Function

$$\mathbf{Var}(\hat{\nabla}^{[0]}F(\theta)) \le \frac{n}{N\sigma^2} \max_{w} \|f(\theta+w)\|_2^2$$

- 1. Scaling with dimension of injected noise.
- 2. Scaling with function value.

Lessons from Stochastic Optimization

- The two gradients converge to the same quantity under sufficient regularity conditions.
 But the regularity conditions can be broken, leading to a biased FoBG.
- 2. Convergence rate scales directly with variance of the estimators, ZoBG often has higher variance. Often, but not always.

ZoBG

Zero-Order Batch Gradient

REINFORCE Likelihood Ratio Score Function

FoBG

First-Order Batch Gradient

Reparametrization Pathwise Derivative

$$\mathbf{Var}(\hat{\nabla}^{[0]}F(\theta)) \le \frac{n}{N\sigma^2} \max_{w} \|f(\theta+w)\|_2^2$$

- 1. Scaling with dimension of injected noise.
- 2. Scaling with function value.

$$\operatorname{Var}(\hat{\nabla}^{[1]}F(\theta)) \le \frac{1}{N} \max_{w} \|\nabla_{\theta} f(\theta + w)\|_{2}^{2}$$

- 1. No scaling with dimension.
- 2. Scaling with value of gradient.

Lessons from Stochastic Optimization

- The two gradients converge to the same quantity under sufficient regularity conditions.
 But the regularity conditions can be broken, leading to a biased FoBG.
- Convergence rate scales directly with variance of the estimators, ZoBG often has higher variance.Often, but not always.

ZoBG Zero-Order Batch Gradient

 $\operatorname{Var}(\hat{\nabla}^{[0]}F(\theta)) \leq \frac{n}{N\sigma^2} \max_{w} \|f(\theta+w)\|_2^2$

FoBG

First-Order Batch Gradient

$$\operatorname{Var}(\hat{\nabla}^{[1]}F(\theta)) \leq \frac{1}{N} \max_{w} \|\nabla_{\theta} f(\theta + w)\|_{2}^{2}$$

ZoBG Zero-Order Batch Gradient

FoBGFirst-Order Batch Gradient

$$\operatorname{Var}(\hat{\nabla}^{[0]}F(\theta)) \leq \frac{n}{N\sigma^2} \max_{w} \|f(\theta+w)\|_2^2$$

$$\operatorname{Var}(\hat{\nabla}^{[1]}F(\theta)) \leq \frac{1}{N} \max_{w} \|\nabla_{\theta} f(\theta + w)\|_{2}^{2}$$

The FoBG CAN have more variance if function values are bounded, but gradients are high.

Case 1. Stiff Contact Models

ZoBG Zero-Order Batch Gradient

FoBG
First-Order Batch Gradient

$$\operatorname{Var}(\hat{\nabla}^{[0]}F(\theta)) \leq \frac{n}{N\sigma^2} \max_{w} \|f(\theta+w)\|_2^2$$

$$\operatorname{Var}(\hat{\nabla}^{[1]}F(\theta)) \leq \frac{1}{N} \max_{w} \|\nabla_{\theta} f(\theta + w)\|_{2}^{2}$$

The FoBG CAN have more variance if function values are bounded, but gradients are high.

Case 1. Stiff Contact Models

Case 2. Chaos

Interpolating the First and Zero-Order Gradients

Consider an interpolated gradient of the two objectives. How should we choose alpha?

Definition 4.1. Given $\alpha \in [0, 1]$, we define the alpha-order batched gradient (AoBG) as:

$$\bar{\nabla}^{[\alpha]}F(\boldsymbol{\theta}) = \alpha \bar{\nabla}^{[1]}F(\boldsymbol{\theta}) + (1-\alpha)\bar{\nabla}^{[0]}F(\boldsymbol{\theta}).$$

Interpolating the First and Zero-Order Gradients

Consider an interpolated gradient of the two objectives. How should we choose alpha?

Definition 4.1. Given $\alpha \in [0, 1]$, we define the alpha-order batched gradient (AoBG) as:

$$\bar{\nabla}^{[\alpha]}F(\boldsymbol{\theta}) = \alpha \bar{\nabla}^{[1]}F(\boldsymbol{\theta}) + (1-\alpha)\bar{\nabla}^{[0]}F(\boldsymbol{\theta}).$$

Original Motivation behind some of these approaches:

- 1. The FoBG may be subject to high variance because of chaos.
- 2. But the empirical variance can be queried online which can inform us which gradient to use more.
- 3. Assuming the samples used to obtain both estimates are uncorrelated, we can minimize expected variance of the interpolated gradient:

$$\min_{\alpha \in [0,1]} \quad \alpha^2 \hat{\sigma}_1^2 + (1 - \alpha)^2 \hat{\sigma}_0^2 \qquad \qquad \alpha^* = \frac{\hat{\sigma}_0^2}{\hat{\sigma}_1^2 + \hat{\sigma}_0^2}$$

Interpolating the First and Zero-Order Gradients

Consider an interpolated gradient of the two objectives. How should we choose alpha?

Definition 4.1. Given $\alpha \in [0, 1]$, we define the alpha-order batched gradient (AoBG) as:

$$\bar{\nabla}^{[\alpha]}F(\boldsymbol{\theta}) = \alpha \bar{\nabla}^{[1]}F(\boldsymbol{\theta}) + (1-\alpha)\bar{\nabla}^{[0]}F(\boldsymbol{\theta}).$$

Original Motivation behind some of these approaches:

- 1. The FoBG may be subject to high variance because of chaos.
- 2. But the empirical variance can be queried online which can inform us which gradient to use more.
- 3. Assuming the samples used to obtain both estimates are uncorrelated, we can minimize expected variance of the interpolated gradient:

$$\min_{\alpha \in [0,1]} \quad \alpha^2 \hat{\sigma}_1^2 + (1 - \alpha)^2 \hat{\sigma}_0^2 \qquad \qquad \alpha^* = \frac{\hat{\sigma}_0^2}{\hat{\sigma}_1^2 + \hat{\sigma}_0^2}$$

But recall the empirical bias phenomenon...empirical variance can be misleading!

Consider an interpolated gradient of the two objectives. How should we choose alpha?

Definition 4.1. Given $\alpha \in [0, 1]$, we define the alpha-order batched gradient (AoBG) as:

$$\bar{\nabla}^{[\alpha]}F(\boldsymbol{\theta}) = \alpha \bar{\nabla}^{[1]}F(\boldsymbol{\theta}) + (1-\alpha)\bar{\nabla}^{[0]}F(\boldsymbol{\theta}).$$

How do we achieve robust interpolation to potential bias of the FoBG?

- 1. We know the ZoBG is always unbiased.
- 2. We can unit-test the FoBG against the ZoBG based on some confidence statistics of the ZoBG.

Previous Interpolation

$$\min_{\alpha \in [0,1]} \quad \alpha^2 \hat{\sigma}_1^2 + (1 - \alpha)^2 \hat{\sigma}_0^2$$

Consider an interpolated gradient of the two objectives. How should we choose alpha?

Definition 4.1. Given $\alpha \in [0, 1]$, we define the alpha-order batched gradient (AoBG) as:

$$\bar{\nabla}^{[\alpha]}F(\boldsymbol{\theta}) = \alpha \bar{\nabla}^{[1]}F(\boldsymbol{\theta}) + (1-\alpha)\bar{\nabla}^{[0]}F(\boldsymbol{\theta}).$$

How do we achieve robust interpolation to potential bias of the FoBG?

- 1. We know the ZoBG is always unbiased.
- 2. We can unit-test the FoBG against the ZoBG based on some confidence statistics of the ZoBG.

Previous Interpolation

$$\min_{\alpha \in [0,1]} \quad \alpha^2 \hat{\sigma}_1^2 + (1 - \alpha)^2 \hat{\sigma}_0^2$$

Robust Interpolation

$$\begin{split} \min_{\alpha \in [0,1]} \quad & \alpha^2 \hat{\sigma}_1^2 + (1-\alpha)^2 \hat{\sigma}_0^2 \\ \text{s.t.} \quad & \epsilon + \alpha \underbrace{\| \bar{\nabla}^{[1]} F - \bar{\nabla}^{[0]} F \|}_{B} \leq \gamma. \end{split}$$

Confidence interval on the ZoBG estimate.

User-defined threshold on allowable bias of FoBG.

How do we achieve robust interpolation to potential bias of the FoBG?

- 1. We know the ZoBG is always unbiased.
- 2. We can unit-test the FoBG against the ZoBG based on some confidence statistics of the ZoBG.

Robust Interpolation

This constraint enforces a chance constraint on the allowable bias of the FoBG.

How do we achieve robust interpolation to potential bias of the FoBG?

- 1. We know the ZoBG is always unbiased.
- 2. We can unit-test the FoBG against the ZoBG based on some confidence statistics of the ZoBG.

Robust Interpolation

This constraint enforces a chance constraint on the allowable bias of the FoBG.

Definition 4.2 (Accuracy). α is (γ, δ) -accurate if the bound on the *error* of AoBG is satisfied with probability δ :

$$\|\bar{\nabla}^{[\alpha]}F(\boldsymbol{\theta}) - \nabla F(\boldsymbol{\theta})\| \le \gamma. \tag{3}$$

Lemma 4.3 (Robustness). Suppose that $\epsilon + \alpha B \leq \gamma$ with probability δ . Then, α is (γ, δ) -accurate.

How do we achieve robust interpolation to potential bias of the FoBG?

- 1. We know the ZoBG is always unbiased.
- 2. We can unit-test the FoBG against the ZoBG based on some confidence statistics of the ZoBG.

Robust Interpolation

This constraint enforces a chance constraint on the allowable bias of the FoBG.

Definition 4.2 (Accuracy). α is (γ, δ) -accurate if the bound on the *error* of AoBG is satisfied with probability δ :

$$\|\bar{\nabla}^{[\alpha]}F(\boldsymbol{\theta}) - \nabla F(\boldsymbol{\theta})\| \le \gamma. \tag{3}$$

Lemma 4.3 (Robustness). Suppose that $\epsilon + \alpha B \leq \gamma$ with probability δ . Then, α is (γ, δ) -accurate.

Lemma 4.4. With $\gamma = \infty$, the optimal α is $\alpha_{\infty} := \frac{\hat{\sigma}_0^2}{\hat{\sigma}_1^2 + \hat{\sigma}_0^2}$. For finite $\gamma \geq \epsilon$, Eq (4) is

$$\alpha_{\gamma} := \begin{cases} \alpha_{\infty} & \text{if} \quad \alpha_{\infty} B \leq \gamma - \varepsilon \\ \frac{\gamma - \varepsilon}{B} & \text{otherwise} \end{cases}$$
 (5)

Results on Robust Interpolation Gradient

- 1. The AoBG obeys some threshold on bias.
- 2. The variance of AoBG is between FoBG and ZoBG on some coordinates results in lower bias.
- 3. NOTE: bias-variance characteristics not only result in convergence-rate arguments, but result in different local minima.

Results on Robust Interpolation Gradient

- 1. The AoBG obeys some threshold on bias.
- 2. The variance of AoBG is between FoBG and ZoBG on some coordinates results in lower bias.
- 3. NOTE: bias-variance characteristics not only result in convergence-rate arguments, but result in different local minima.

Trajectory Optimization Example

How does performance of gradient descent with different estimators perform as we increase the stiffness of contact?

Trajectory Optimization Example

How does performance of gradient descent with different estimators perform as we increase the stiffness of contact?

- 1. FoBG results in worse performance as we increase stiffness
- 2. ZoBG results in worse performance for softer systems
- 3. AoBG automates the procedure of selecting between the two.

Policy Optimization Example

How do different policy gradients perform on policy optimization?

Policy Optimization Example

How do different policy gradients perform on policy optimization?

- 1. FoBG does worse the ZoBG asymptotically.
- AoBG descends down faster than ZoBG
- However, a wide enough distribution will contain discontinuities, and AoBG will tend to utilize ZoBG more. Limitation of the method.