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Motivation. Policy Optimization for Physical Systems

Success of Policy Optimization for Robotics

1. Collect data in simulation, run zero-order policy optimization (e.g. PPO)
2. Impressive results in manipulation, locomotion.

[1] OpenAl, “Solving Rubik’'s Cube with a Robot Hand”
[2] T. Miki et al., “Learning robust perceptive locomotion for quadrupedal robots in the wild”.
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Still Leaves Much to be Desired.

1. Incredibly data hungry. Need many samples / time to train a policy.
2. We know structure for these systems. The fact that we cannot do better than
blackbox optimization algorithms is both theoretically / practically unsatisfying.
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1. Collect data in simulation, run zero-order policy optimization (e.g. PPO)
2. Impressive results in manipulation, locomotion.

Still Leaves Much to be Desired.
1. Incredibly data hungry. Need many samples / time to train a policy.

2. We know structure for these systems. The fact that we cannot do better than
blackbox optimization algorithms is both theoretically / practically unsatisfying.

Can we do better by leveraging model structure for robotics?

[1] OpenAl, “Solving Rubik’'s Cube with a Robot Hand”
[2] T. Miki et al., “Learning robust perceptive locomotion for quadrupedal robots in the wild”.




Motivation. Differentiable Simulation

Can we do better by leveraging model structure for robotics?
Yes, let's make our models differentiable and use first-order gradients.

Fast and Feature-Complete Differentiable Physics

ADD: Analytically Differentiable Dynamics for Multi-Body Systems i 1 i i i . .. . .
with Fricti:nal cf,ntm Y v Interactive Differentiable Simulation for Articulated Rigid Bodies with Contact
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The Pinocchio C++ library
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If we have access to autodiff gradients for physics simulation, is it better to use them for policy search?
Are there pathologies where using these gradients actually hurt?



Setup. Stochastic Optimization.

Stochastic First vs. Zeroth-Order Optimization (Additive Gaussian Noise)
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Lessons from Stochastic Optimization

1. The two gradients converge to the same quantity under sufficient regularity conditions.
2. Convergence rate scales directly with variance of the estimators, ZoBG often has higher variance.
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Lessons from Stochastic Optimization

1. The two gradients converge to the same quantity under sufficient regularity conditions.
But the regularity conditions can be broken, leading to a biased FoBG.

2. Convergence rate scales directly with variance of the estimators, ZoBG often has higher variance.
Often, but not always.

FoBG can be biased for discontinuous (not locally Lipschitz) landscapes!
lllustrated best by sampling from a Heaviside.
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Note that since samples of first-order gradients are identically zero,
- The FoBG is zero, while the gradient of stochastic objective is non-zero everywhere.
- The empirical variance of the FoBG is also zero.



The Pathologies of FOBG: Discontinuities

FoBG can be biased for discontinuous (not locally Lipschitz) landscapes!

lllustrated best by sampling from a Heaviside.
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Perhaps the strictness of the
discontinuity is a modeling decision,

what if we soften it?




The Pathologies of FOBG: Empirical Bias

Empirical Bias: Continuous yet stiff Approximations of Discontinuities
Look like Strict Discontinuities in the finite-sample regime.
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Empirical Bias: Continuous yet stiff Approximations of Discontinuities
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In finite-sample regime, there is no way to
distinguish between strict discontinuity and
its stiff continuous relaxations.
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Lessons from Stochastic Optimization

1. The two gradients converge to the same quantity under sufficient regularity conditions.
But the regularity conditions can be broken, leading to a biased FoBG.

2. Convergence rate scales directly with variance of the estimators, ZoBG often has higher variance.
Often, but not always.
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Lessons from Stochastic Optimization

1. The two gradients converge to the same quantity under sufficient regularity conditions.
But the regularity conditions can be broken, leading to a biased FoBG.

2. Convergence rate scales directly with variance of the estimators, ZoBG often has higher variance.
Often, but not always.

dim w
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Var(v[ ]F(Q)) < w2z Maxy 1/ (6 +w)l]3
REINFORCE
Likelihood Ratio . . : : . :
Score Function 1. Scaling with dimension of injected noise.
2. Scaling with function value.
FOBG Var(VINF(9)) < % maxy, ||Vef(0 +w)l3
First-Order Batch Gradient
Reparametrization 1. No scaling with dimension.

Pathwise Derivative 2. Scaling with value of gradient.



The Pathologies of FOBG: High Variance

Lessons from Stochastic Optimization

1. The two gradients converge to the same quantity under sufficient regularity conditions.
But the regularity conditions can be broken, leading to a biased FoBG.

2. Convergence rate scales directly with variance of the estimators, ZoBG often has higher variance.
Often, but not always.
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Zero-Order Batch Gradient First-Order Batch Gradient
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The FOBG CAN have more variance if function values are bounded, but gradients are high.
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The Pathologies of FOBG: High Variance
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Interpolating the First and Zero-Order Gradients

Consider an interpolated gradient of the two objectives. How should we choose alpha?

Definition 4.1. Given « € |0, 1], we define the alpha-order
batched gradient (AoBG) as:

Veelp@) = aVIHF(0) + (1 — a)VIIF().
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Definition 4.1. Given « € |0, 1], we define the alpha-order
batched gradient (AoBG) as:

Veelp@) = aVIHF(0) + (1 — a)VIIF().

Original Motivation behind some of these approaches:

1. The FoBG may be subject to high variance because of chaos.
2. But the empirical variance can be queried online which can inform us which gradient to use more.
3. Assuming the samples used to obtain both estimates are uncorrelated, we can minimize expected
variance of the interpolated gradient:
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Interpolating the First and Zero-Order Gradients

Consider an interpolated gradient of the two objectives. How should we choose alpha?

Definition 4.1. Given « € |0, 1], we define the alpha-order
batched gradient (AoBG) as:

Veelp@) = aVIHF(0) + (1 — a)VIIF().

Original Motivation behind some of these approaches:

1. The FoBG may be subject to high variance because of chaos.
2. But the empirical variance can be queried online which can inform us which gradient to use more.
3. Assuming the samples used to obtain both estimates are uncorrelated, we can minimize expected
variance of the interpolated gradient:
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But recall the empirical bias phenomenon....empirical variance can be misleading!



Robust Interpolation

Consider an interpolated gradient of the two objectives. How should we choose alpha?

Definition 4.1. Given « € |0, 1], we define the alpha-order
batched gradient (AoBG) as:

VelF(6) = aVUF(6) + (1 — o) VI F(6).
How do we achieve robust interpolation to potential bias of the FoBG?

1. We know the ZoBG is always unbiased.
2. We can unit-test the FOBG against the ZoBG based on some confidence statistics of the ZoBG.

Previous Interpolation

min  a”67 + (1 — a)?65
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This constraint enforces a chance constraint on the allowable bias of the FoBG.
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Definition 4.2 (Accuracy). « is (v, §)-accurate if the bound
on the error of AoBG is satisfied with probability o:
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Lemma 4.3 (Robustness). Suppose that e + aB < v with
probability 6. Then, « is (v, §)-accurate.



Robust Interpolation

How do we achieve robust interpolation to potential bias of the FOBG?

1. We know the ZoBG is always unbiased.
2. We can unit-test the FOBG against the ZoBG based on some confidence statistics of the ZoBG.

Robust Interpolation
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Confidence interval on _—" ~ ~ < .
the ZoBG estimate. B \ User-defined threshold on
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This constraint enforces a chance constraint on the allowable bias of the FoBG.

Definition 4.2 (Accuracy). « is (v, §)-accurate if the bound . . . 52

on the error of AoBG is satisfied with probability o Lemma 4.4. Withy = oo, the optimal a is Cioo := 7257
For finite v > €, Eq (4) is

VIR (8) - VF(8)] <. (3)
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Lemma 4.3 (Robustness). Suppose that e + aB < v with
probability 6. Then, « is (v, §)-accurate.



Results on Robust Interpolation Gradient
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=0.002 4

—0.004 4

ZOBG
AOBG
FOBG

—0.006 4

—0.008 4

—0.010

200

100 600
iterations

800

—|

1000



Results on Robust Interpolation Gradient
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different local minima.



Scaling Results on Practical Examples
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Trajectory Optimization Example

How does performance of gradient descent with different
estimators perform as we increase the stiffness of contact?



Scaling Results on Practical Examples
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Trajectory Optimization Example

How does performance of gradient descent with different
estimators perform as we increase the stiffness of contact?

1. FoBG results in worse performance as we increase stiffness
2. ZoBG results in worse performance for softer systems
3. Ao0BG automates the procedure of selecting between the two.



Scaling Results on Practical Examples
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Scaling Results on Practical Examples
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™ =5, o SH 1. FoBG does worse the ZoBG asymptotically.
- 2. AoBG descends down faster than ZoBG
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discontinuities, and AoBG will tend to utilize
ZoBG more. Limitation of the method.
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