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Motivation. Policy Optimization for Physical Systems

Success of Policy Optimization for Robotics

1. Collect data in simulation, run zero-order policy optimization (e.g. PPO)
2. Impressive results in manipulation, locomotion.

[1] OpenAI, “Solving Rubik’s Cube with a Robot Hand”
[2] T. Miki et al., “Learning robust perceptive locomotion for quadrupedal robots in the wild”.
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Are there pathologies where using these gradients actually hurt?
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Yes, let’s make our models differentiable and use first-order gradients.
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The Pathologies of FoBG
Lessons from Stochastic Optimization

1. The two gradients converge to the same quantity under sufficient regularity conditions.

2. Convergence rate scales directly with variance of the estimators, ZoBG often has higher variance.

But the regularity conditions can be broken, leading to a biased FoBG.

Often, but not always. 

FoBG can be biased for discontinuous (not locally Lipschitz) landscapes! 
Illustrated best by sampling from a Heaviside.

Note that since samples of first-order gradients are identically zero,
- The FoBG is zero, while the gradient of stochastic objective is non-zero everywhere.
- The empirical variance of the FoBG is also zero. 
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FoBG can be biased for discontinuous (not locally Lipschitz) landscapes! 
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Not just a pathology, but common in physical systems involving contact.

1. Discontinuities caused by geometry (non-smooth 
surfaces, discontinuous normal).

2. Discontinuities caused by friction and tangential 
velocities.

3. Discontinuities caused by impacts.
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The Pathologies of FoBG: Discontinuities
FoBG can be biased for discontinuous (not locally Lipschitz) landscapes! 
Illustrated best by sampling from a Heaviside.

Not just a pathology, but common in physical systems involving contact.

1. Discontinuities caused by geometry (non-smooth 
surfaces, discontinuous normal).

2. Discontinuities caused by friction and tangential 
velocities.

3. Discontinuities caused by impacts.

Perhaps the strictness of the 
discontinuity is a modeling decision, 

what if we soften it?

A B
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Empirical Bias: Continuous yet stiff Approximations of Discontinuities 
Look like Strict Discontinuities in the finite-sample regime.

1. Gradient of stiff approximations take high 
value with low probability 

2. In finite-sample regime, there is no way to 
distinguish between strict discontinuity and 
its stiff continuous relaxations.
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1. Scaling with dimension of injected noise.
2. Scaling with function value.

1. No scaling with dimension.
2. Scaling with value of gradient.
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FoBG
First-Order Batch Gradient

ZoBG
Zero-Order Batch Gradient

The FoBG CAN have more variance if function values are bounded, but gradients are high. 

Case 2. ChaosCase 1. Stiff Contact Models
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Original Motivation behind some of these approaches: 

1. The FoBG may be subject to high variance because of chaos. 
2. But the empirical variance can be queried online which can inform us which gradient to use more.
3. Assuming the samples used to obtain both estimates are uncorrelated, we can minimize expected 

variance of the interpolated gradient: 

But recall the empirical bias phenomenon….empirical variance can be misleading!
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1. The AoBG obeys some threshold on bias.
2. The variance of AoBG is between FoBG and ZoBG – on some coordinates results in lower bias.
3. NOTE: bias-variance characteristics not only result in convergence-rate arguments, but result in 

different local minima.



Results on Robust Interpolation Gradient

1. The AoBG obeys some threshold on bias.
2. The variance of AoBG is between FoBG and ZoBG – on some coordinates results in lower bias.
3. NOTE: bias-variance characteristics not only result in convergence-rate arguments, but result in 

different local minima.



Scaling Results on Practical Examples

How does performance of gradient descent with different 
estimators perform as we increase the stiffness of contact? 

Trajectory Optimization Example



Scaling Results on Practical Examples

How does performance of gradient descent with different 
estimators perform as we increase the stiffness of contact? 

Trajectory Optimization Example

1. FoBG results in worse performance as we increase stiffness
2. ZoBG results in worse performance for softer systems 
3. AoBG automates the procedure of selecting between the two. 
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Scaling Results on Practical Examples

Policy Optimization Example

How do different policy gradients perform on policy 
optimization?

1. FoBG does worse the ZoBG asymptotically.
2. AoBG descends down faster than ZoBG
3. However, a wide enough distribution will contain 

discontinuities, and AoBG will tend to utilize 
ZoBG more. Limitation of the method.
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