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Sampling in Graph Neural Network
@ Graph topology sampling: node-wise, layer-wise, subgraph sampling.
@ Why sampling? To reduce computational & memory costs.
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Cluster-GCN (Chiang et al., 2019)

H("’[OO\‘O‘CO‘O.

sampling achieve satisfactory generalization?

GraphSage (Hamilton et al., 2017)
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FastGCN (Chen et al., 2018)
Under what conditions does a graph convolutional network (GCN) learned with graph topology
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N
Problem formulation and GCN Model

Consider a graph with N nodes and the normalized adjacency matrix A € RV*N. We study a
semi-supervised node classification problem with |Q| known labels, where Q C [N]. The goal is to
predict unknown labels in [N]/Q.

. NXd  dictrihiition.
@ Feature matrix: X € R"V*? distribution-free. mput lager ‘Q./'(‘} .
@ Learner network: three-layer GCN with my, my e 7N
neurons in the two hidden layers. Layer | \.> »/***-—'
Agg‘regatl(m Conv@
Fa(e,, X: W, V)= el A-ReLU(r + B,)C, e (m)
A( g ) g ( 2) (1) Layer 2 g /. - 77,4-
r=A-ReLU(AXW + B;)V
. . o '
@ Loss function: non-negative & convex, including Layer3. LN
_ C N —
-2 regression and cross entropy s
@ SGD with graph topology sampling. Output layer ’}/.5}

Hongkang Li

3/7



-
Graph topology Sampling

Categorize the nodes of the graph into different groups based on orders of degree. Implement
group-wise uniform sampling.

remove
@ Randomly removing nodes and the incident edges. x.z\ ;3

@ Higher sampling rate on higher-degree nodes.

@ For sampled nodes, scale the corresponding
columns of A. For unsampled nodes, set the

corresponding columns of A to 0. ; ; o S
e
Effective adjacency matrix A*: A* = A -diag(py, p5, -, py). where pf, i € [N] is the group-wise
sampling probability of node i. A* is more balanced than A for unbalanced graphs.
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Theorem 1 (informal)
For any small v, € > 0, as long as the overparameterization satisfies
my = my = m > poly (A", € 71), 2)

and the sample complexity satisfies

Q] > O(poly(e ™2, ||A*||o0) - log N log m), (3)

@ Training with graph topology sampling returns a model that has the same performance as the
model trained by a GCN with A* as the effective adjacency matrix

@ A generalization error at most (1 4+ v)OPT g+ + €.

@ OPTa-: the smallest population risk over the choices of C*, Wy, Wy, V¥, V5 in the target
function, which is defined as

FZ*(eg,X) = egTA* (cb(l’l) © r2) C*, n = A*(ﬁl(A*XWl*)Vl*, rn = A*¢2(A*XW2*)V2* (4)
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Numerical Results

@ Graph sampling reduces the impact of dominating nodes, resulting in a more balanced A*.
@ Similar results of FastGCN (Chen et al., 2018).
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