

Generalization Guarantee of Training Graph Convolutional Networks with Graph Topology Sampling

Hongkang Li¹, Meng Wang¹, Sijia Liu^{2,3}, Pin-yu Chen³, Jinjun Xiong⁴

¹Rensselaer Polytechnic Institute

²Michigan State University

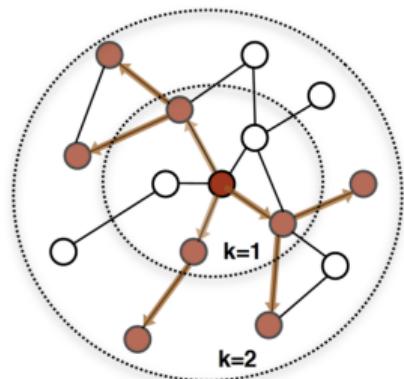
³IBM Research

⁴University at Buffalo

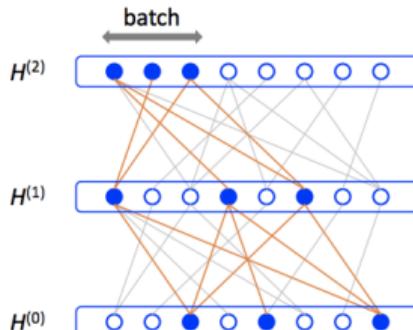
International Conference on Machine Learning (ICML 2022)
July, 2022

Sampling in Graph Neural Network

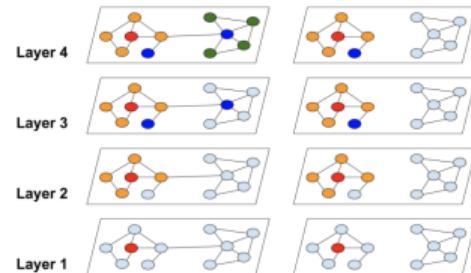
- Graph topology sampling: node-wise, layer-wise, subgraph sampling.
- Why sampling? To reduce computational & memory costs.



GraphSage (Hamilton et al., 2017)



FastGCN (Chen et al., 2018)



Cluster-GCN (Chiang et al., 2019)

Under what conditions does a graph convolutional network (GCN) learned with graph topology sampling achieve satisfactory generalization?

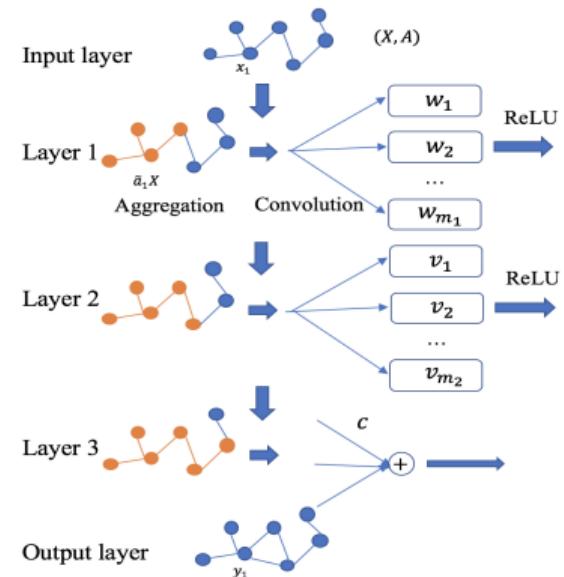
Problem formulation and GCN Model

Consider a graph with N nodes and the normalized adjacency matrix $\mathbf{A} \in \mathbb{R}^{N \times N}$. We study a semi-supervised node classification problem with $|\Omega|$ known labels, where $\Omega \subset [N]$. The goal is to predict unknown labels in $[N]/\Omega$.

- Feature matrix: $\mathbf{X} \in \mathbb{R}^{N \times d}$, distribution-free.
- Learner network: three-layer GCN with m_1, m_2 neurons in the two hidden layers.

$$\begin{aligned} F_{\mathbf{A}}(\mathbf{e}_g, \mathbf{X}; \mathbf{W}, \mathbf{V}) &= \mathbf{e}_g^\top \mathbf{A} \cdot \text{ReLU}(\mathbf{r} + \mathbf{B}_2) \mathbf{C}, \\ \mathbf{r} &= \mathbf{A} \cdot \text{ReLU}(\mathbf{A} \mathbf{X} \mathbf{W} + \mathbf{B}_1) \mathbf{V} \end{aligned} \quad (1)$$

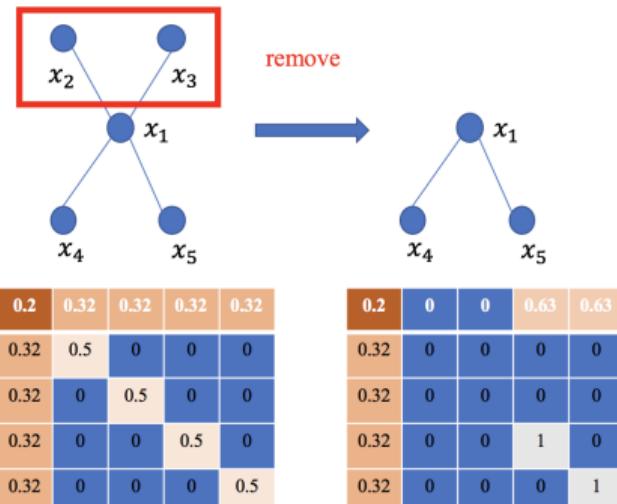
- Loss function: non-negative & convex, including ℓ_2 regression and cross entropy
- SGD with graph topology sampling.



Graph topology Sampling

Categorize the nodes of the graph into different groups based on orders of degree. Implement group-wise uniform sampling.

- Randomly removing nodes and the incident edges.
- Higher sampling rate on higher-degree nodes.
- For sampled nodes, scale the corresponding columns of \mathbf{A} . For unsampled nodes, set the corresponding columns of \mathbf{A} to 0.



Effective adjacency matrix \mathbf{A}^ :* $\mathbf{A}^* = \mathbf{A} \cdot \text{diag}(p_1^*, p_2^*, \dots, p_N^*)$, where p_i^* , $i \in [N]$ is the group-wise sampling probability of node i . \mathbf{A}^* is more balanced than \mathbf{A} for unbalanced graphs.

Theorem 1 (informal)

For any small γ , $\epsilon > 0$, as long as the overparameterization satisfies

$$m_1 = m_2 = m \geq \text{poly}\left(\|\mathbf{A}^*\|_\infty, \epsilon^{-1}\right), \quad (2)$$

and the sample complexity satisfies

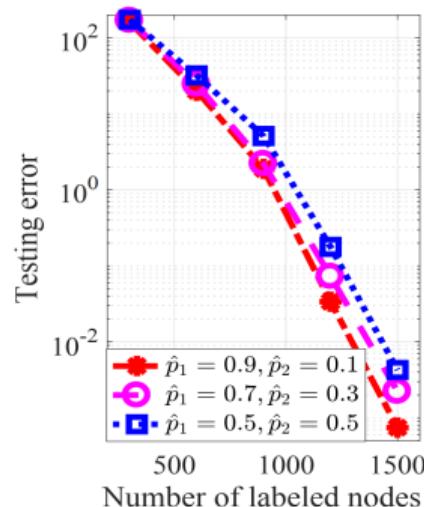
$$|\Omega| \geq \Theta(\text{poly}(\epsilon^{-1}, \|\mathbf{A}^*\|_\infty) \cdot \log N \log m), \quad (3)$$

- Training with graph topology sampling returns a model that has the same performance as the model trained by a GCN with \mathbf{A}^* as the *effective* adjacency matrix
- A generalization error at most $(1 + \gamma)\text{OPT}_{\mathbf{A}^*} + \epsilon$.
- $\text{OPT}_{\mathbf{A}^*}$: the smallest population risk over the choices of \mathbf{C}^* , \mathbf{W}_1^* , \mathbf{W}_2^* , \mathbf{V}_1^* , \mathbf{V}_2^* in the target function, which is defined as

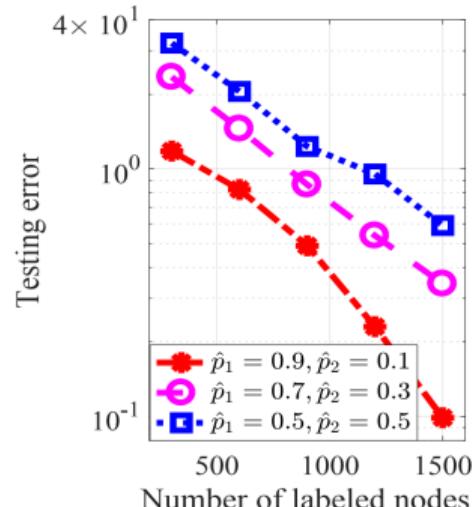
$$F_{\mathbf{A}^*}^*(\mathbf{e}_g, \mathbf{X}) = \mathbf{e}_g^\top \mathbf{A}^* (\Phi(\mathbf{r}_1) \odot \mathbf{r}_2) \mathbf{C}^*, \quad \mathbf{r}_1 = \mathbf{A}^* \phi_1(\mathbf{A}^* \mathbf{X} \mathbf{W}_1^*) \mathbf{V}_1^*, \quad \mathbf{r}_2 = \mathbf{A}^* \phi_2(\mathbf{A}^* \mathbf{X} \mathbf{W}_2^*) \mathbf{V}_2^* \quad (4)$$

Numerical Results

- Graph sampling reduces the impact of dominating nodes, resulting in a more balanced \mathbf{A}^* .
- Similar results of FastGCN (Chen et al., 2018).



(a)



(b)

References

References

- Hamilton, W., Ying, Z., and Leskovec, J. Inductive representation learning on large graphs. In Advances in neural information processing systems, pp. 1024-1034, 2017.
- Chen, J., Ma, T., and Xiao, C. Fastgcn: Fast learning with graph convolutional networks via importance sampling. In International Conference on Learning Representations, 2018
- Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh, C.-J. Cluster-gcn: An efficient algorithm for training deep and large graph convolutional networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery Data Mining, pp. 257-266, 2019.