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Reinforcement Learning
Background

« Setup: An agent interacts with an environment over K episodes.
« Markov Decision Process (MDP): S - state set, A- action set, Reward function, Transition dynamics.
* Episodic RL (H rounds per episodes).

 Function approximation in Linear MDP ([Jin, Yang, Wang, Jordan. ’19]): There exist a known feature mapping ¢(x, a) € RY.
Rewards and dynamics are linear in ¢( -, - ).
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Reinforcement Learning

Realizability [Jin, Yang, Wang, Jordan. '19]):
BaCkg rou nd There exist w* s.t. the optimal policy has the
form:
* _ *
« Setup: An agent interacts with an environment over K episodes. T, (x) = arg maj{(W , (x,a))
ac
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Reinforcement Learning With Privacy

Motivation

* Private data: Sequence of state and rewards.

« Example:

Xo = (Fever=high, Cough=Yes, Covid=Positive) ry < R(xy, ay)
x; = (Fever=high, Cough=No, Covid=Positive) r < R(x;,a;)
X, = (Fever=no, Cough=No, Covid=Positive) r, < R(x,,a,)

Xy = (Fever=no, Cough=No, Covid=Negative) ry < R(x3, )
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Motivation

* Private data: Sequence of state and rewards.

« Example:

Private Data of user u;

x, = (Fever=high, Cough=Yes, Covid=Positive) ry < R(xy, ay)
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Joint Differential Privacy (JDP)

* Notation:
» A user u, Is represented by a tree. Each path encodes a sequence of states.
* A randomized algorithm ./ takes as input a user sequence U = (u;, ..., Ug) .

e Outputs ay, ...ax < A (U)
© Ay ...Qp_1,0gpqs ... Ag — M _(U) (Exclude action k)
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* Notation: X
» A user u, Is represented by a tree. Each path encodes a sequence of states.
* A randomized algorithm ./ takes as input a user sequence U = (u;, ..., Ug) . : X,
e Outputs ay, ...ax < A (U) , .
© Ay li_1y ity .-, Ag — M _(U) (Exclude action k) X3 -
A randomized algorithm . is JDP if:
» For all k and all k-neighboring U = (uy, ..., ug), U = (iy, ..., Ug), s.t. u; = i,

only if i # k.
+ Then M_(U) ~ M_(U)

Intuition: Changing the data of a user in position k € [ K|, has a small effect on the outcome of past or future episodes.



Metrics

» Suppose there exists an optimal policy 7* and the algorithm plays policies {7z, ..., 7}

* Regret..
R(K) = (Reward for always playing z*) — (Reward for playing =, ..., 7x)

* Switching Cost: Number of times the algorithm updates the policy (Controls trade-off
between non-private and private regret).



Contributions

* Algorithm: JDP version of Optimistic Least-Squares-Value-Ilteration ([Jin, Yang,
Wang, Jordan. ’19]) and [Wang, Zhou, Gu. ’21]:
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