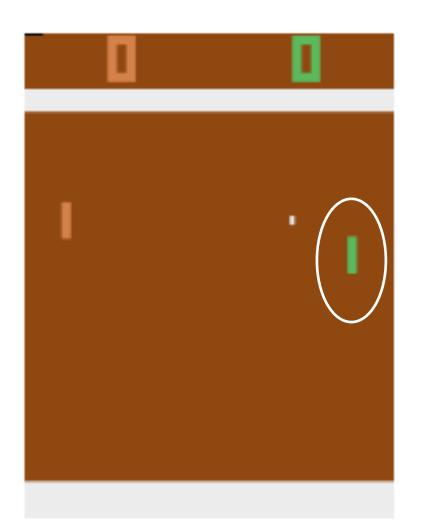
Robust Deep Reinforcement Learning through Bootstrapped Opportunistic Curriculum

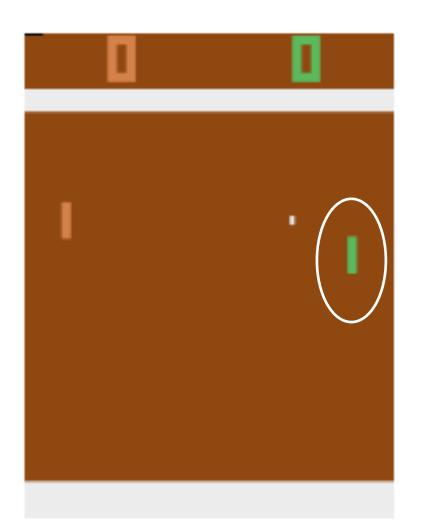
Junlin Wu · Yevgeniy Vorobeychik Washington University in St. Louis

Background Adversarial Deep Reinforcement Learning

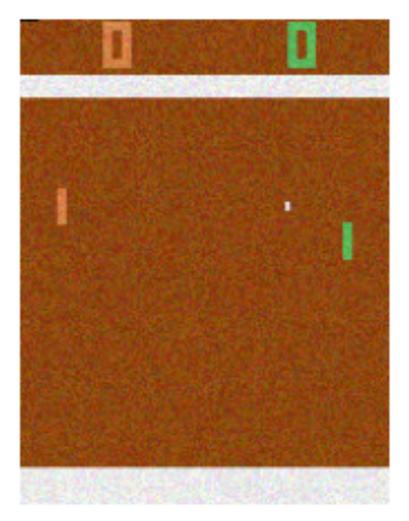


Original Image Input

Background Adversarial Deep Reinforcement Learning



Original Image Input



+ Adversarial Perturbation

Background **Attacking Method**

where Q(s) is the vector of Q values over all actions in state s.

 A common attack on Deep Q-Network (DQN) aims <u>maximize cross-entropy loss</u> $\mathscr{L}(\text{Softmax}(Q(s + \delta; \theta)), \pi(s))$ with respect to δ (adversarial perturbation),

Background **Attacking Method**

- where Q(s) is the vector of Q values over all actions in state s.
- A PGD (projected gradient descent) attack <u>updates δ iteratively</u>: $\delta_{k+1} \leftarrow \delta_k + \alpha \cdot \operatorname{sign}(\nabla_{\delta} \mathscr{L}(Q(x + \delta_k; \theta), \pi(s)))$ over a fixed number of iterations with $\|\delta\|_{\infty} \leq \epsilon$.

 A common attack on Deep Q-Network (DQN) aims <u>maximize cross-entropy loss</u> $\mathscr{L}(\text{Softmax}(Q(s + \delta; \theta)), \pi(s)))$ with respect to δ (adversarial perturbation),

Background **Attacking Method**

- where Q(s) is the vector of Q values over all actions in state s.
- A PGD (projected gradient descent) attack <u>updates δ iteratively</u>: $\delta_{k+1} \leftarrow \delta_k + \alpha \cdot \operatorname{sign}(\nabla_{\delta} \mathscr{L}(Q(x + \delta_k; \theta), \pi(s)))$ over a fixed number of iterations with $\|\delta\|_{\infty} \leq \epsilon$.
- executed for only <u>a single iteration</u> and $\alpha = \epsilon$.

• A common attack on Deep Q-Network (DQN) aims maximize cross-entropy loss $\mathscr{L}(\text{Softmax}(Q(s + \delta; \theta)), \pi(s)))$ with respect to δ (adversarial perturbation),

• A special class of PGD is **FGSM** (fast gradient sign method), where PGD is

Prior Literature Adversarial Deep Reinforcement Learning

• The goal is to train a robust RL age adversarial attack $||\delta||_{\infty} \leq \epsilon$).

• The goal is to train a robust RL agent (i.e., achieve a high reward when under

Prior Literature Adversarial Deep Reinforcement Learning

- adversarial attack $|\delta||_{\infty} \leq \epsilon$).
- interval bound propagation to increase the robustness of RL agent (e.g., robust up to 5/255 for Pong game).

• The goal is to train a robust RL agent (i.e., achieve a high reward when under

• The SOTA method is RADIAL [Oikarinen et al., 2021], where they leveraged

Prior Literature Adversarial Deep Reinforcement Learning

- adversarial attack $||\delta||_{\infty} \leq \epsilon$).
- interval bound propagation to increase the robustness of RL agent (e.g., robust up to 5/255 for Pong game).
- higher values of ϵ).

The goal is to train a robust RL agent (i.e., achieve a high reward when under

• The SOTA method is RADIAL [Oikarinen et al., 2021], where they leveraged

• Our goal is to increase the robustness of the RL agent further (robust against

• We propose *Bootstrapped Opportunistic Adversarial Curriculum Learning* (BCL), a novel flexible adversarial curriculum learning framework for robust reinforcement learning.

- $\{\epsilon_i\}$, with $\epsilon_1 < \epsilon_2 < \cdots < \epsilon_L$, where $\epsilon_L = \epsilon$ is our target robustness level.

• We propose <u>Bootstrapped Opportunistic Adversarial Curriculum Learning</u> (BCL), a novel flexible adversarial curriculum learning framework for robust reinforcement learning.

• Begins by creating a **baseline curriculum**: an increasing sequence of L attack budgets

- $\{\epsilon_i\}$, with $\epsilon_1 < \epsilon_2 < \cdots < \epsilon_L$, where $\epsilon_L = \epsilon$ is our target robustness level.
- run is bootstrapped by the best model obtained thus far.

• We propose <u>Bootstrapped Opportunistic Adversarial Curriculum Learning</u> (BCL), a novel flexible adversarial curriculum learning framework for robust reinforcement learning.

• Begins by creating a **baseline curriculum**: an increasing sequence of L attack budgets

• In each curriculum phase, we run adversarial training (AT) up to K times, where each AT

- $\{\epsilon_i\}$, with $\epsilon_1 < \epsilon_2 < \cdots < \epsilon_L$, where $\epsilon_L = \epsilon$ is our target robustness level.
- run is bootstrapped by the best model obtained thus far.
- - Performing fewer than K runs for each curriculum phases;
 - Skipping forward the curriculum phases.

 We propose <u>Bootstrapped Opportunistic Adversarial Curriculum Learning</u> (BCL), a novel flexible adversarial curriculum learning framework for robust reinforcement learning.

• Begins by creating a **baseline curriculum**: an increasing sequence of L attack budgets

• In each curriculum phase, we run adversarial training (AT) up to K times, where each AT

• For example, based on observed performance, we could speed up the training by

Adversarial Loss Function

We experiment on two types of adversarial loss functions:

Adversarial Loss Function

We experiment on two types of adversarial loss functions:

• RADIAL method:

Use interval bound propagation (RADIAL-DQN [Oikarinen et al., 2021]).

Adversarial Loss Function

We experiment on two types of adversarial loss functions:

• RADIAL method:

Use interval bound propagation (RADIAL-DQN [Oikarinen et al., 2021]).

• AT method:

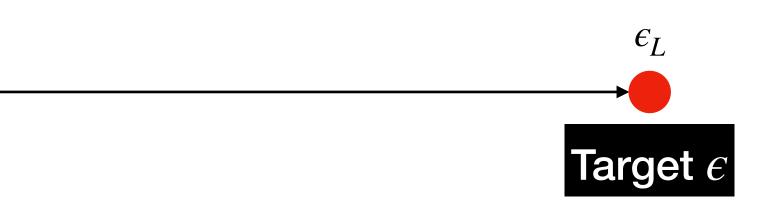
Use FGSM-based method and leverage the structure of Double-DQN to generate **adversarial examples** efficiently during training time.

- AT-DQN (Adversarial Training)
- NCL-AT/RADIAL-DQN (Naive Curriculum Learning)
- BCL-C-AT-DQN (Conservatively Bootstrapped Curriculum Learning) BCL-MOS-AT-DQN (Maximum Opportunistic Skipping) BCL-RADIAL-DQN (BCL with RADIAL approach) BCL-RADIAL+AT-DQN (BCL-RADIAL-DQN + BCL-C-AT-DQN)

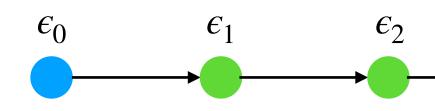
Benchmark Models

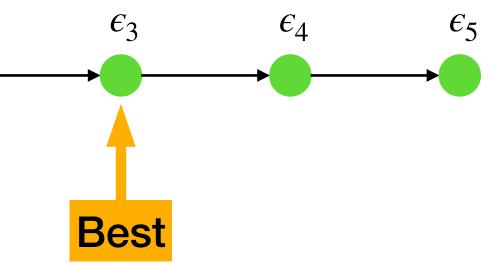
• AT-DQN (Adversarial Training)

 ϵ_0

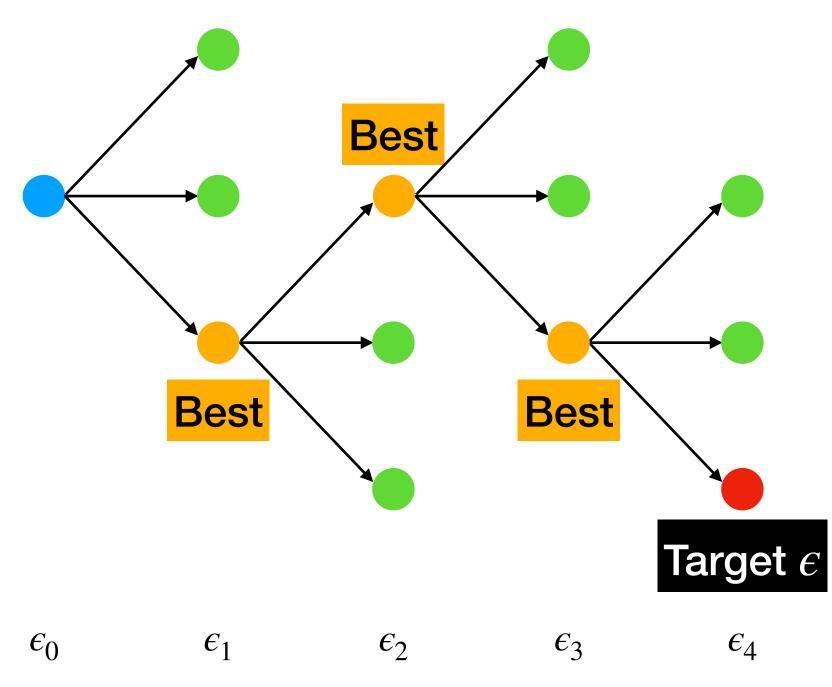


- AT-DQN (Adversarial Training)
- NCL-AT/RADIAL-DQN (Naive Curriculum Learning)





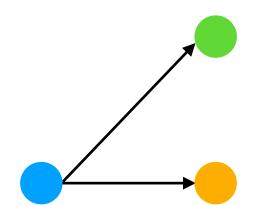
BCL-C-AT-DQN (Conservatively Bootstrapped Curriculum Learning)



- Perform *K* runs for each phase
- Choose the best model among K results

- BCL-C-AT-DQN (Conservatively Bootstrapped Curriculum Learning)
- BCL-MOS-AT-DQN (Maximum Opportunistic Skipping)

We use a threshold to decide whether a model is robust against ϵ_i



 ϵ_0

 ϵ_1

 ϵ_2

 ϵ_3

 ϵ_4

otstrapped Curriculum Learning) ortunistic Skipping)

 ϵ_5

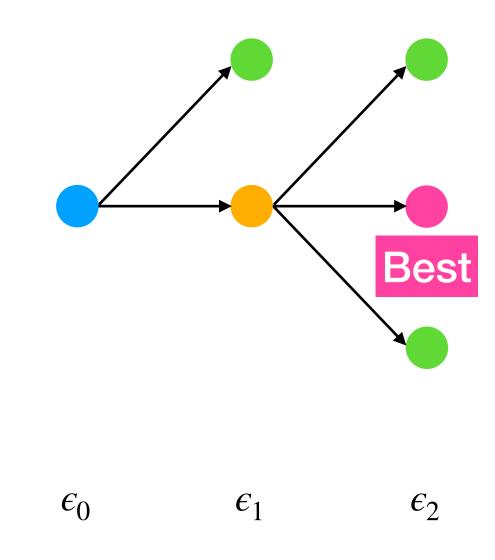
• Perform **up to** K runs for each phase

- BCL-C-AT-DQN (Conservatively Bootstrapped Curriculum Learning)
- BCL-MOS-AT-DQN (Maximum Opportunistic Skipping)

We use a threshold to decide whether a model is robust against ϵ_i

 ϵ_3

 ϵ_4



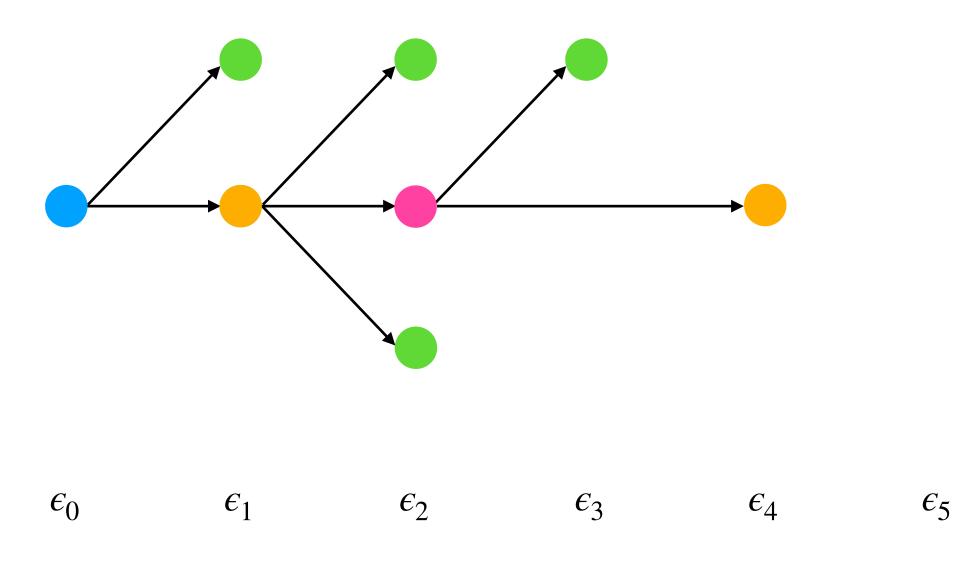
otstrapped Curriculum Learning) ortunistic Skipping)

 ϵ_5

• Perform **up to** K runs for each phase

- BCL-C-AT-DQN (Conservatively Bootstrapped Curriculum Learning)
- BCL-MOS-AT-DQN (Maximum Opportunistic Skipping)

We use a threshold to decide whether a model is robust against ϵ_i

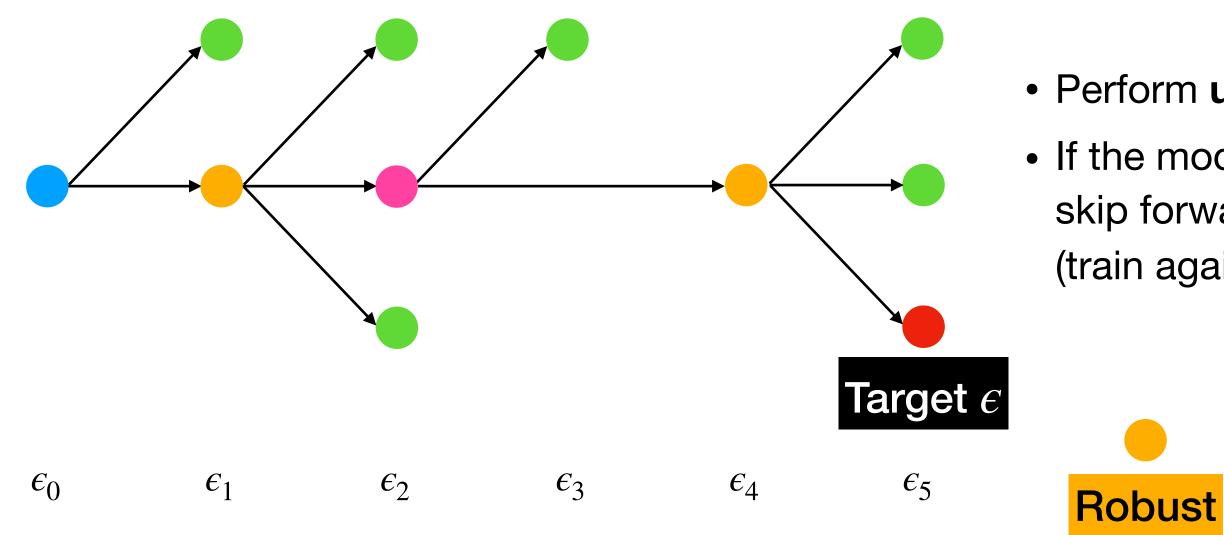


otstrapped Curriculum Learning) ortunistic Skipping)

- Perform **up to** K runs for each phase
- If the model is robust against ϵ_{i+1} , skip forward the curriculum phase (train against ϵ_{i+2})

- BCL-C-AT-DQN (Conservatively Bootstrapped Curriculum Learning)
- BCL-MOS-AT-DQN (Maximum Opportunistic Skipping)

We use a threshold to decide whether a model is robust against ϵ_i



otstrapped Curriculum Learning) ortunistic Skipping)

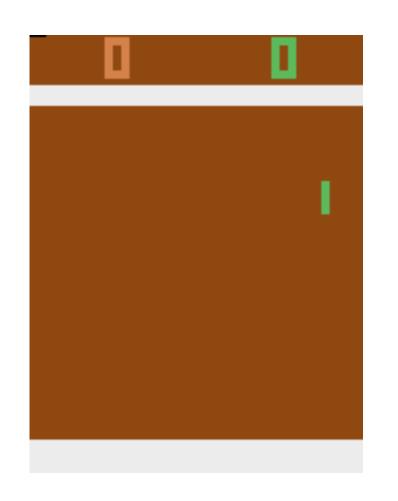
- Perform **up to** K runs for each phase
- If the model is robust against ϵ_{i+1} , skip forward the curriculum phase (train against ϵ_{i+2})

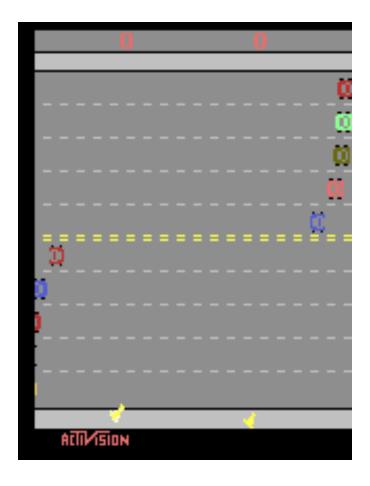
- BCL-C-AT-DQN (Conservatively Bootstrapped Curriculum Learning) BCL-MOS-AT-DQN (Maximum Opportunistic Skipping)
- BCL-RADIAL-DQN (BCL with RADIAL approach)

- BCL-C-AT-DQN (Conservatively Bootstrapped Curriculum Learning) BCL-MOS-AT-DQN (Maximum Opportunistic Skipping)
- BCL-RADIAL-DQN (BCL with RADIAL approach)
- BCL-RADIAL+AT-DQN (BCL-RADIAL-DQN + BCL-C-AT-DQN)

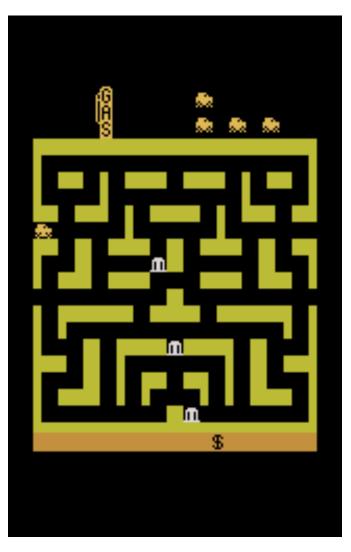
Experiments

OpenAl Gym with discrete action space:

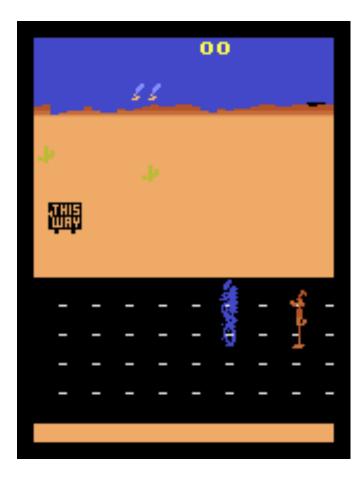




We evaluate the proposed approach using four Atari-2600 games from the



BankHeist



RoadRunner

Experiments Benchmark Models

- DQN (Vanilla)
- SA-DQN (Convex) [Zhang et al., 2020]
- RADIAL-DQN [Oikarinen et al., 2021]
- AT-DQN (standard adversarial training)
- NCL-AT-DQN (naive curriculum learning with adversarial examples)
- NCL-RADIAL-DQN (naive curriculum learning with RADIAL method)

20] 1]

ng) ming with adversarial examples) m learning with RADIAL method)

Experiments **Results – Pong**

significantly outperforms all benchmark models for higher values of ϵ .

		Pong		
METHOD/METRIC	Nominal	30-STEP PGD/RI-FGSM ATTACK		
ϵ	0	10/255	20/255	25/255
DQN (VANILLA)	21.0	-21.0	-21.0	-21.0
SA-DQN (CONVEX)	21.0	-21.0	-21.0	-21.0
RADIAL-DQN	21.0	-21.0	-21.0	-21.0
AT-DQN	21.0	18.0	-0.8	-19.4
NCL-AT-DQN	21.0	20.4	-21.0	-21.0
NCL-RADIAL-DQN	21.0	-20.6	-21.0	-21.0
BCL-C-AT-DQN	21.0	21.0	21.0	21.0
BCL-MOS-AT-DQN	21.0	21.0	20.9	20.9
BCL-RADIAL-DQN	21.0	21.0	-20.9	-21.0

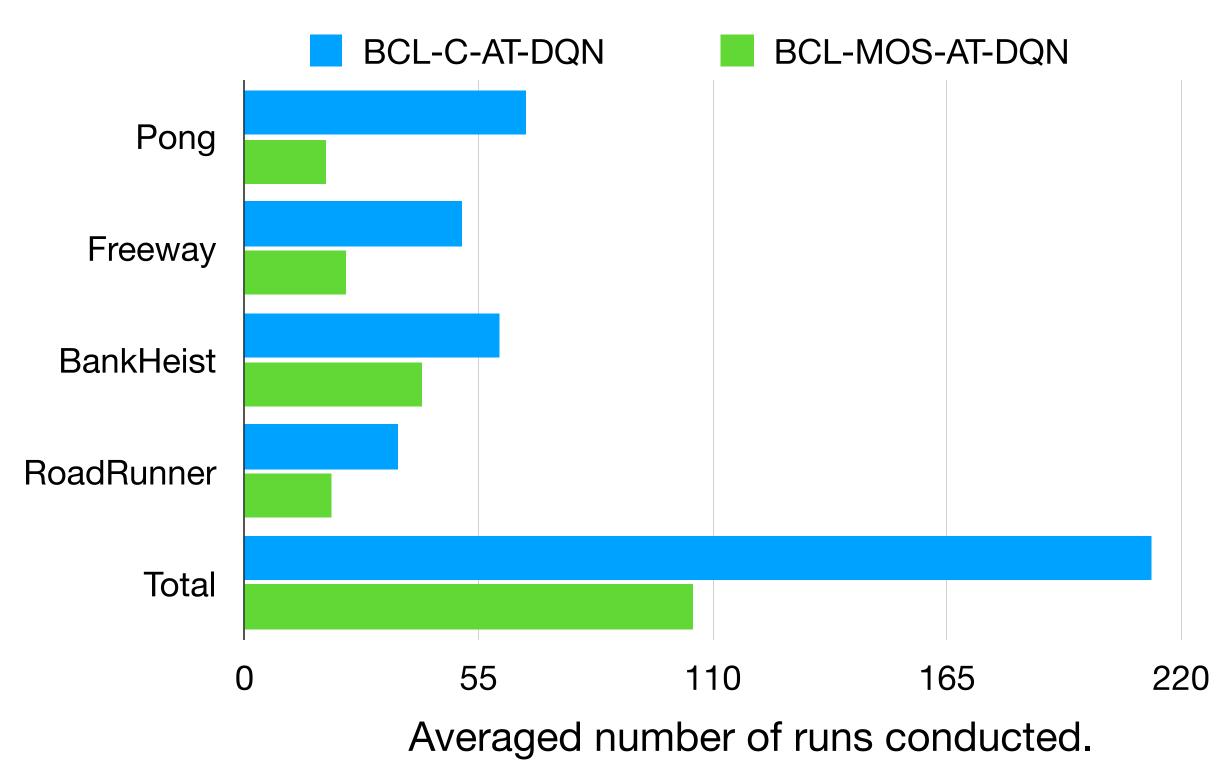
Our BCL models trained with adversarial examples (BCL-C/MOS-AT-DQN)

Experiments **Results – BankHeist**

- Our BCL models outperform all benchmarks.
- BCL-RADIAL+AT-DQN yields the most significant result.

BANKHEIST						
METHOD/METRIC	Nominal	30-STEP PGD/RI-FGSM ATTACK				
ϵ	0	5/255	10/255	15/255		
DQN (VANILLA)	1325.5	0.0	0.0	0.0		
SA-DQN (CONVEX)	1237.5	1126.0	63.0	16.0		
RADIAL-DQN	1349.5	581.5	0.0	0.0		
AT-DQN	1271.0	129.0	5.5	0.0		
NCL-AT-DQN	1311.0	245.0	1.0	0.0		
NCL-RADIAL-DQN	1272.0	1168.0	59.5	9.0		
BCL-C-AT-DQN	1285.5	1143.5	988.5	250.5		
BCL-MOS-AT-DQN	1307.5	1095.5	664.0	586.5		
BCL-RADIAL-DQN	1225.5	1225.5	1223.5	228.5		
BCL-RADIAL+AT-DQN	1215.0	1093.0	1010.5	961.5		

Maximum Opportunistic Skipping BCL-C-AT-DQN vs BCL-MOS-AT-DQN



 BCL-MOS-AT-DQN significantly reduces training time (in terms of the number) of training phases) and the performance is as good as BCL-C-AT-DQN.

Conclusion

In summary, we make the following contributions:

- key role.
- curriculum.
- generation as a part of adaptive curriculum generation.
- due to the proposed BCL framework.

A novel flexible adversarial curriculum learning framework for reinforcement learning

(BCL), in which bootstrapping each phase from multiple executions of previous phase plays a

A novel opportunistic adaptive generation variant that <u>opportunistically skips forward</u> in the

An approach that composes interval bound propagation and FGSM-based adversarial input

 An extensive experimental evaluation using OpenAI Gym <u>Atari games (DQN-style)</u> and **Procgen (PPO-style, Appendix)** that demonstrates significant improvement in robustness

Please check our poster at Hall E #915.

Thank you!