Entropic Causal Inference: Graph Identifiability

Spencer Compton, Kristjan Greenewald, Dmitriy Katz, Murat Kocaoglu

Motivation

- Learning underlying causal relationships
- Using only observational data: no experiments

Setting: Categorical variables. No latent confounders.

X	Y	
0	1	
0	1	
0	0	
1	1	

$$Y = 0 \ Y = 1$$
 $X = 0 \ 30/100 \ 20/100$

$$X = 1$$

10/100 40/100

Joint Dist. p(X,Y)

Goal: Determine the causal direction.

Goal: Learning causal systems with many variables.

Joint Dist. p(X,Y)

$$p(X)p(Y|X)$$
 Cause Mechanism

$$Y = f(X, E), X \perp \!\!\! \perp E$$

$$X = g(Y, \tilde{E}), Y \perp \!\!\!\perp \tilde{E}$$

Assumption: True causal mechanism is "simple".

Is it true that the Rényi entropy of **any model** in the **wrong** causal direction will be **large**?

Our Results

Relaxing assumptions for pairs

 Extend entropic causality to larger graphs with a provably correct peeling algorithm

Graph Setting

 $X_i = f(Pa(X_i), E_i), Pa(X_i) \perp \!\!\! \perp E_i$

Graph Assumptions

Graph Assumptions: Consider an SCM where $X_i = f_i(Pa_i, E_i), Pa_i \perp \!\!\! \perp E_i$, $X_i \in [n], E_i \in [m]$. We assume $H(E_i) = o(\log(\log(n)))$,

$$E_i$$
 has $\Omega(n)$ states with $\Omega\left(\frac{1}{n\log(n)}\right)$ mass and f_i is uniformly random.

Graph Assumptions

Graph Assumptions: Consider an SCM where $X_i = f_i(Pa_i, E_i), Pa_i \perp \!\!\! \perp E_i$, $X_i \in [n], E_i \in [m]$. We assume $H(E_i) = o(\log(\log(n)))$,

$$E_i$$
 has $\Omega(n)$ states with $\Omega\left(\frac{1}{n\log(n)}\right)$ mass and f_i is uniformly random.

In summary, assuming all E_i have non-negligible support and low entropy, while all functions are randomly chosen.

Source-Pathwise Comparisons

Theorem: Given our graph assumptions, consider any pair of nodes X, Y where X is a source and there is a directed path from X to Y. The pairwise minimum-entropy comparison orients $X \to Y$ with high probability.

Source-Pathwise Comparisons

Theorem: Given our graph assumptions, consider any pair of nodes X, Y where X is a source and there is a directed path from X to Y. The pairwise minimum-entropy comparison orients $X \to Y$ with high probability.

These comparisons enable us to find the sources!

Source-Pathwise Comparisons

Theorem: Given our graph assumptions, consider any pair of nodes X, Y where X is a source and there is a directed path from X to Y. The pairwise minimum-entropy comparison orients $X \to Y$ with high probability.

These comparisons enable us to find the sources!

Source-Finding Peeling Algorithm

Source-Finding Peeling Algorithm

Source-Finding Peeling Algorithm

Provably learns general graphs!

Experiments: Synthetic Graphs

(a) Bivariate

(b) 3-Node Complete Graph

(c) 4-Node Complete Graph

Experiments: Real-World Graphs

THANK YOU