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Motivation

• Learning underlying causal relationships


• Using only observational data: no experiments
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Entropic Causality
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Setting: Categorical variables. No latent confounders.

Goal: Determine the causal direction.
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Entropic Causality
Goal: Learning causal systems with many variables.
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Entropic Causality
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Entropic Causality

Assumption:

TRUE MODEL

Is it true that the Rényi entropy of any model in the 
wrong causal direction will be large?

Rényi entropy 	             is 
small.

Support Size Shannon Entropy

≡

True causal mechanism is “simple”.

Kocaoglu, Dimakis, 
Vishwanath, Hassibi ’17, AAAI
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Greenewald, Katz ’20, NeurIPS



Our Results
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• Relaxing assumptions for pairs


• Extend entropic causality to larger graphs with a 
provably correct peeling algorithm
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Graph Setting



 has  states with  mass and  is uniformly random.Ei Ω(n) Ω ( 1
n log(n) ) fi
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Graph Assumptions



 has  states with  mass and  is uniformly random.Ei Ω(n) Ω ( 1
n log(n) ) fi
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Graph Assumptions

In summary, assuming all      have non-negligible 
support and low entropy, while all functions are 

randomly chosen.
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Source-Pathwise Comparisons
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Source-Pathwise Comparisons

These comparisons enable us to find the sources!
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Source-Pathwise Comparisons

These comparisons enable us to find the sources!
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Source-Finding Peeling Algorithm
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Source-Finding Peeling Algorithm
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Source-Finding Peeling Algorithm
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Provably learns general graphs!
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Experiments: Synthetic Graphs
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Experiments: Real-World Graphs



THANK YOU
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