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Motivation

« Learning underlying causal relationships

« Using only observational data: no experiments




Entropic Causality

Setting: Categorical variables. No latent confounders.
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Joint Dist. p(X,Y)

Goal: Determine the causal direction.
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Entropic Causality

Goal: Learning causal systems with many variables.




Entropic Causality
Joint Dist. p(X,Y)
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Entropic Causality

Y = f(X,E),X ILE

Assumption: True causal mechanism is “simple”.

= Rényi entropy H, (F) is

small.
Kocaoglu, Dimakis, Compton, Kocaoglu,
Vishwanath, Hassibi '17, AAAI Greenewald, Katz 20, NeurlIPS
Hy(.) : Support Size H,(.) : Shannon Entropy

s it frue that the Rényi entropy of any model in the
wrong causal direction will be large®?



Our Results

» Relaxing assumptions for pairs

» Extend entropic causality to larger graphs with a
provably correct peeling algorithm



Graph Setting
Pa(X)
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Graph Assumptions

Graph Assumptions: Consider an SCM where X,; = f;(Pa;, E;), Pa; 1L E;,
X; € [n], E; € [m], We assume H (E;) = o(log(log(n))).

E; has Q(n) states with Q (

> mass and f; is uniformly random.
nlog(n)



Graph Assumptions

Graph Assumptions: Consider an SCM where X; = f;(Pa;, E;), Pa; 1 E;,
X; € [nl], E; € [m|, We assume H(E;) = o(log(log(n))),

E; has Q(n) states with Q (

> mass and f; is uniformly random.
nlog(n)

In summary, assuming all £, have non-negligible
support and low entropy, while all functions are
randomly chosen.



Source-Pathwise Comparisons

Theorem: Given our graph assumptions, consider any pair of nodes X, Y where
X is a source and there is a directed path from Xto ¥ The pairwise
minimum-entropy comparison orients X — Y with high probability.
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Source-Pathwise Comparisons

Theorem: Given our graph assumptions, consider any pair of nodes X, Y where
X is a source and there is a directed path from Xto ¥ The pairwise
minimum-entropy comparison orients X — Y with high probabillity.

These comparisons enable us to find the sources!
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Source-Pathwise Comparisons

Theorem: Given our graph assumptions, consider any pair of nodes X, Y where
X is a source and there is a directed path from Xto ¥ The pairwise
minimum-entropy comparison orients X — Y with high probabillity.

These comparisons enable us to find the sources!
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Source-Finding Peeling Algorithm

On®

A4

O

11



Source-Finding Peeling Algorithm
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Source-Finding Peeling Algorithm
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Provably learns general graphs!
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Avg. SHD

Experiments: Synthetic Graphs
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(b) 3-Node Complete Graph
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Experiments: Real-World Graphs
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