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to do this: sparse penalized regression and best subset selection.

Sparse methods have inferential and algorithmic issues. For example, Lasso estimates are biased 

and affected by feature correlations.

Best subset selection requires sifting through a model space that exponentially increases in size 

with model parameters. They are poorly explored for dependent or structured data models, such 

as mixed effect models.
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We do best subset selection by fitting just the full model---the model with all p input features---

and computing the model selection criterion at p+1 models.
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Steps

1. Fit the full model and compute its e-value.

2. Drop an input feature, compute the e-value of 

that dropped-feature model.

3. Collect input features dropping which causes 

the e-value to go down.
𝑆 = {𝑗: 𝑒−𝑗 < 𝑒full; 1 ≤ 𝑗 ≤ 𝑝}



Definition

Data depth functions 𝐷 𝑥, 𝔽 quantify the inlyingness of a point 𝑥 in multivariate space with respect 

to a probability distribution 𝔽.

Sampling distribution (𝔽ℳ) of model ℳ is the distribution of the model parameter estimate ෠𝜃ℳ , 

based on the random data samples the estimate is calculated from.

The e-value of model ℳ is the mean data depth of its sampling distribution with respect to its full 

model sampling distribution:

Only need to compute ෠𝜃full. For the jth dropped-feature model, just make ෠𝜃full,𝑗 = 0.

𝑒 𝑀 = 𝔼෡𝜃ℳ~𝔽ℳ
𝐷 መ𝜃ℳ , 𝔽full .
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Sampling distributions are approximated using Generalized Bootstrap (GBS).

Parameter estimate Expression
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Gradient
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FAST!
Only requires 

Monte-Carlo 

sampling of weights
Tuning parameter, optimized 

using a BIC-like criterion
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Experiments: linear mixed model



Real data experiments

Indian monsoon: our method isolates known 

factors instrumental behind amount of rainfall.



Real data experiments

Indian monsoon: our method isolates known 

factors instrumental behind amount of rainfall.

fMRI: our method detects activity in regions of 

brain responsible for visual perception.

Optic nerve

Cerebellum

Visual cortex



Thank you!


