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Motivation

Feature selection is a fundamental problem in statistics and machine learning. There are two ways
to do this: sparse penalized regression and best subset selection.
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Motivation

Feature selection is a fundamental problem in statistics and machine learning. There are two ways
to do this: sparse penalized regression and best subset selection.

Sparse methods have inferential and algorithmic issues. For example, Lasso estimates are biased
and affected by feature correlations.

Best subset selection requires sifting through a model space that exponentially increases in size
with model parameters. They are poorly explored for dependent or structured data models, such

as mixed effect models.
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We do best subset selection by fitting just the full model---the model with all p input features---
and computing the model selection criterion at p+1 models.
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that dropped-feature model.
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The e-values method

We do best subset selection by fitting just the full model---the model with all p input features---
and computing the model selection criterion at p+1 models.

Steps

1. Fit the full model and compute its e-value. »

S={ie_j<eqm1<j<pj}

2. Drop an input feature, compute the e-value of
that dropped-feature model.

3. Collect input features dropping which causes
the e-value to go down.
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Definition

Data depth functions D (x, I[F) quantify the inlyingness of a point x in multivariate space with respect
to a probability distribution IF.

Sampling distribution (F,;) of model M is the distribution of the model parameter estimate 8,,,
based on the random data samples the estimate is calculated from.

The e-value of model M is the mean data depth of its sampling distribution with respect to its full
model sampling distribution:

e(M) = Eg,, 5, D(0r Frun)-

Only need to compute B5,y. For the jt dropped-feature model, just make §fun, j=0.
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Generalized Bootstrap

Sampling distributions are approximated using Generalized Bootstrap (GBS).

Parameter estimate  Expression

n
Original 0 = arg mgnz:lpi(@;zi)
i=1
n - n
i A A T A
GBS version O ~ 0 —— zw 0,Z) z Y;(6,Z;)
Vn | & —

1S, Chatterjee and A. Bose, The Annals of Statistics, 33(1): 414-436, 2005
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Generalized Bootstrap

Sampling distributions are approximated using Generalized Bootstrap (GBS).

Parameter estimate  Expression

n
Original 6 = arg mein z Y;(0,Z;) < Energy functions

i=1 < Samples may not be independent

n -1 n
- A A T A A
GBS version Op ~ O —p= Z N CA) z Wi;(0,Z;)
ﬁ . .
i=1 i=1 ‘
‘ Gradient

Tuning parameter, optimized Hessian
using a BIC-like criterion i.i.d. weights with mean 0, variance 1

1S, Chatterjee and A. Bose, The Annals of Statistics, 33(1): 414-436, 2005
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Generalized Bootstrap

Sampling distributions are approximated using Generalized Bootstrap (GBS).

Parameter estimate  Expression

n
Original 0 = arg mein z 1/)1-(9, Zi) < Energy functions
=1 < Samples may not be independent
n -1 n
GBS version O ~ 0 — i [Z Yi'(0,Z) z TATHCEA FAST!
Vn o = Only requires
/ ‘ Monte-Carlo
‘ Gradient sampling of weights
Tuning parameter, optimized Hessian
using a BIC-like criterion i.i.d. weights with mean 0, variance 1

1S, Chatterjee and A. Bose, The Annals of Statistics, 33(1): 414-436, 2005
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Experiments: linear model
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Experiments: linear model
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Experiments: linear mixed model

Method Setting 1: n; = 5,m = 30 Setting 2: n; = 10, m = 60
FPR FNR Acc MS FPR FNR Acc MS
0=0 94 0.0 76 233 00 00 100 2.00
0=001 67 00 82 222 00 0.0 100 2.00
e-value 0 =0.05 1.0 0.0 97 203 00 00 100 2.00

0=0.1 03 00 99 201 0.0 0.0 100 2.00
=015 00 00 100 200 0.0 0.0 100 2.00

BIC 21.5 99 49 226 1.5 1.9 86 2.10

AIC 17 11.0 46 243 1.5 3.3 77 2.20
SCAD (Peng & Lu, 2012) GCV 205 6 49 230 1.5 3 79 2.18

Viegn/n 21 156 33 267 15 4.1 72 2.26
M-ALASSO (Bondell et al., 2010) - - 73 - - - 83 -
SCAD-P (Fan & Li, 2012) - - 90 - - - 100 -
rPQL (Hui et al., 2017) - - 98 - - - 99 -

Table 6.2. Performance comparison for mixed effect models. We compare e-values with a number of sparse penalized methods: (a) Peng
& Lu (2012) that uses SCAD penalty and different methods of selecting regularization tuning parameters, (b) The adaptive lasso-based
method of Bondell et al. (2010), (¢) The SCAD-P method Fan & Li (2012), and (d) regularized Penalized Quasi-Likelihood Hui et al.
(2017, rPQL). For comparison with Peng & Lu (2012), we present mean false positive (FPR) and false negative (FNR) rates, Accuracy
(Acc), and Model Size (MS), i.e. the number of non-zero fixed effects estimated. To compare with other methods we only use Acc, since
they did not report the rest of the metrics.
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Real data experiments

Indian monsoon: our method isolates known
factors instrumental behind amount of rainfall.

Method GBIC . Test Error
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Real data experiments

Indian monsoon: our method isolates known fMRI: our method detects activity in regions of
factors instrumental behind amount of rainfall. brain responsible for visual perception.

Method . GBIC . Test Error

. ] Optic nerve
A el . ......................................
E I
w
B I I 1
_10.
oz < c[zlefulu o s s 2 < 2[x|zz[s 2 2o 9 2 e Ww=2wWuww ww
A FHE EES EEE R R R RS- Cerebellum
o wigHElE = 2|~ EEEEEE XXXxXxXX
o ul <]z K N
Q o £ III>\>\>\
a w et b > 5 o
| [ -
F Visual cortex
3 I [
— Covariate




International Conference
On Machine Learning

Thank you!




