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Related work

Reinforcement learning (RL) Generative modeling

» Directly optimizes molecular * Uses a surrogate model of
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* Prohibitively slow when optimizing » Technique has so far not reached
for expensive-to-compute the property scores of RL-
properties, e.g. binding affinity generated molecules
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Methodology
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Binding affinity

* Directly optimize in the latent space to generate new molecules that have a
variety of target properties

* Instead of predicting properties from the latent space, LIMO uses a property
predictor stacked on top of the VAE decoder

* Fully differentiable, LIMO allows for more targeted molecule generation and
accurate property prediction



Target Protein
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 Human estrogen receptor (ESR1): a target of drugs used to treat breast cancer, has many known binders. Used
a crystal structure of the protein (PDB 1ERR) for docking calculations and the location of the binding site.

 Human peroxisomal acetyl-CoA acyl transferase 1 (ACAA1): challenge from Structural Genomics Consortium,
no known binders but does have a crystal structure (PDB 21IK) with a potential drug-binding pocket.



Experiments

Single-objective binding affinity optimization

METHOD ESR1 ACAAI1 TIME
IST 2ND 3RD | IST 2ND 3RD | (HRS)
GCPN 6.4 66 8.5 75 83 84 6
MOLDQN | 373 588 1062 | 240 337 608 6
GRAPHDF | 25 477 51 | 370 520 590 | 12
MARS 17 64 69 | 163 203 236 6
LIMO 0.72 0.89 14 | 37 37 41 1

* Task: generate molecules with high binding affinity to a target protein, computed by a
physics-based affinity estimator (AutoDock-GPU)

« Metric: K, a measure of binding affinity, lower is better

 Human estrogen receptor (ESR1) and peroxisomal acetyl-CoA acyl transferase 1
(ACAA1) are disease-relevant proteins



Experiments

Single-objective binding affinity optimization

 Examples of generated molecules:

Polyene
Large cycle
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Generated molecules
are toxic...

...and hard to synthesize!

KD — 3.7 * 10—8 M KD — 4.1 * 10_8 M



Experiments

Multi-objective binding affinity optimization

LIGAND OPTIMIZED PROP. NON-OPTIMIZED PROP.
Kp (AD) () QED (1) SA ({)| Kp (ABFE) (}) LipINsKI PAINS () Fsp’ (1) MCE-18 (1)
ESR1
LIMO MOL. #1 4.6 0.43 4.8 6-10° v 0 0.16 90
LIMO MOL. #2 2.8 0.64 4.9 1000 v 0 0.52 76
GCPN MOL. #1 810 0.43 4.2 v 0 0.29 22
GCPN MoL. #2| 2.7-10% 0.80 3.7 v 0 0.56 47
TAMOXIFEN 87 0.45 2.0 1.5% v 0 0.23 16
RALOXIFENE 7.9-.10° 0.32 2.4 0.030% v 0 0.25 59
ACAA1

LIMO MOL. #1 28 0.57 5.5 4.10% v 0 0.52 52
LIMO MOL. #2 31 0.44 4.9 NO BINDING v 0 0.81 45
GCPN MOL. #1 8500 0.69 . v 0 0.52 61
GCPN MOL. #2 8500 0.54 4.3 v 0 0.52 30

» Solution: incorporate measures of molecule quality (synthesizability and drug-
likeness) into optimization process



Experiments

Multi-objective binding affinity optimization

New molecules are more
synthesizable and drug-like!
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Experiments

Multi-objective binding affinity optimization

Human estrogen receptor Human peroxisomal acetyl-CoA acyl
transferase 1




Takeaways

* Two neural networks (decoder and property predictor) in sequence enables
faster gradient-based reverse-optimization of molecular properties.

* Multi-objective optimization including drug-likeness and synthesizability is
important for molecule generation with high binding affinity

Code available at https://github.com/Rose-STL-Lab/LIMO

Thank you for your attention!
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