

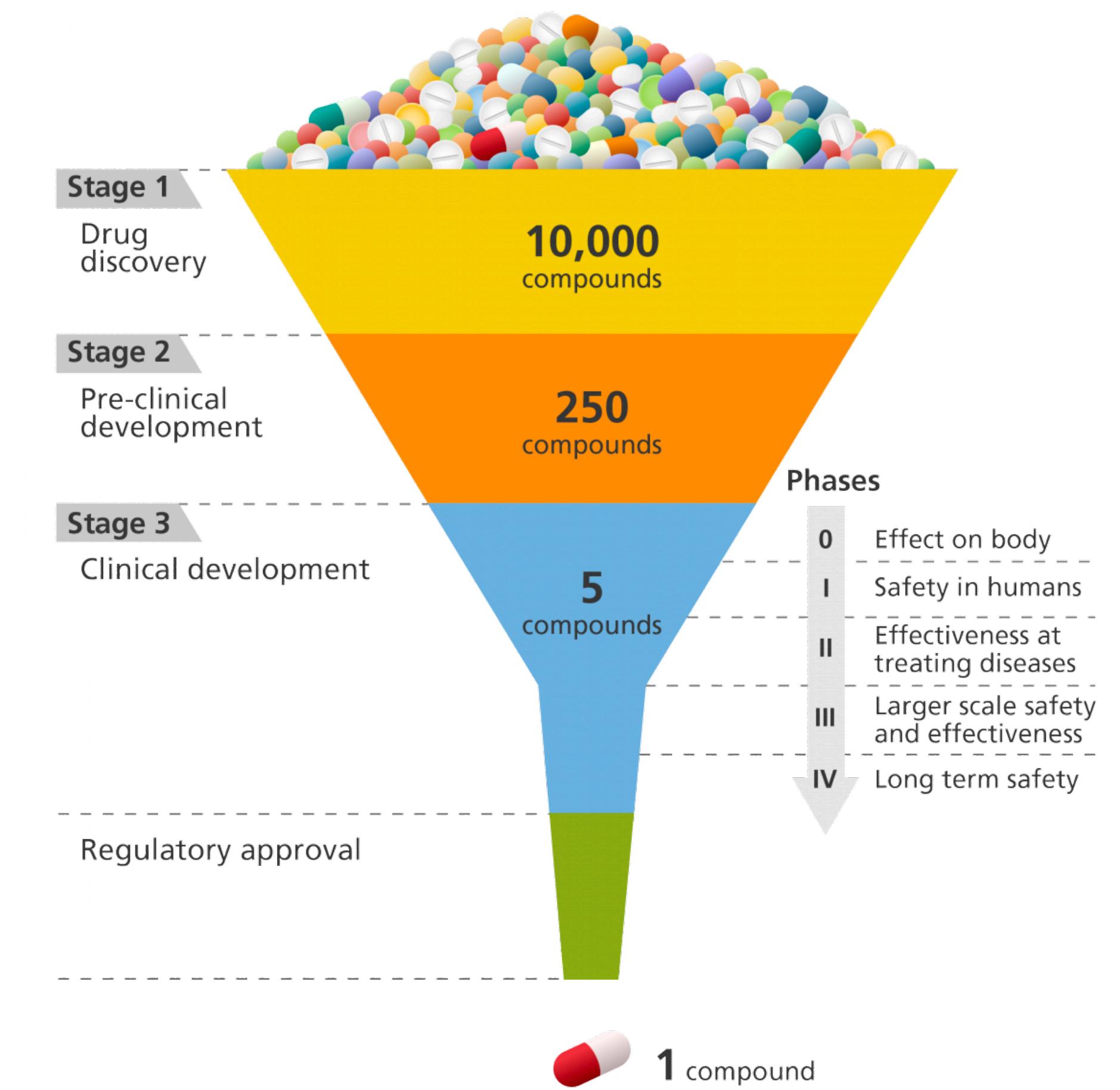
LIMO: Latent Inceptionism for Targeted Molecule Generation

Peter Eckmann, Kunyang Sun, Bo Zhao, Mudong Feng, Michael K. Gilson, Rose Yu
UC San Diego

ICML 2022
ID: 16741
Session 5 Track 3
Poster: 5:45pm PDT

Introduction

- Central goal of drug discovery is finding drug-like molecules with high binding affinity to a target protein
- Currently, identifying new molecules is a resource-intensive process, involving large and inefficient experimental compound screens
- Generative models suggest new compounds to synthesize and test
- We present a novel approach to targeted molecule generation called Latent Inceptionism on Molecules (LIMO), a fast generative modeling framework for *de novo* design



Related work

Reinforcement learning (RL)

- Directly optimizes molecular properties by systematically altering or constructing a molecular graph (e.g. GCPN¹, GraphDF²)
- Effective at generating molecules with desired properties
- Prohibitively slow when optimizing for expensive-to-compute properties, e.g. binding affinity

Generative modeling

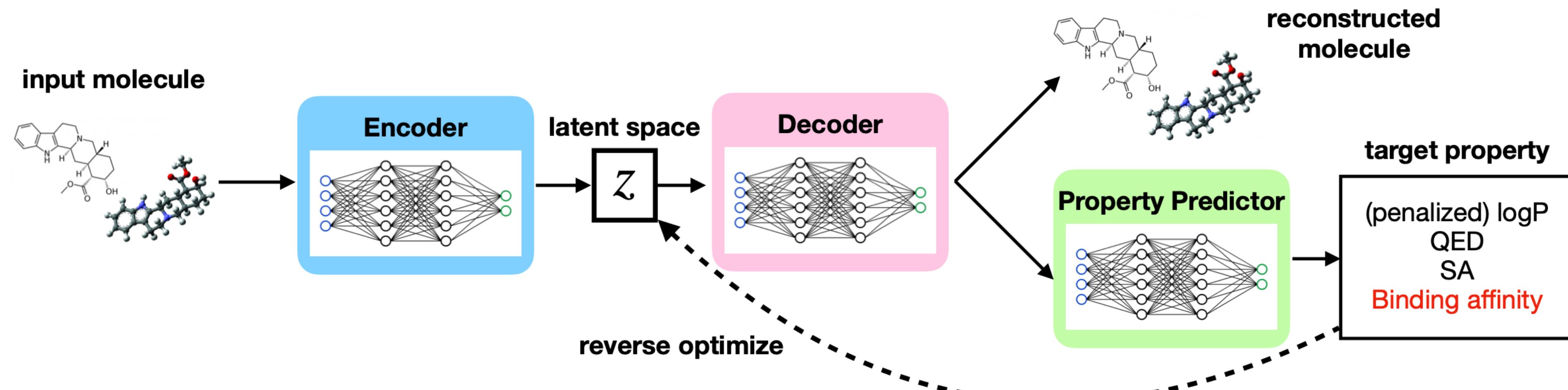
- Uses a surrogate model of molecular properties on top of a learned latent space mapping to discrete molecular structures (JT-VAE³)
- Very fast at generating molecules
- Technique has so far not reached the property scores of RL-generated molecules

¹You, J., Liu, B., Ying, R., Pande, V., and Leskovec, J. Graph convolutional policy network for goal-directed molecular graph generation. In *32nd Conference on Neural Information Processing Systems*, 2018.

²Luo, Y., Yan, K., and Ji, S. GraphDF: A discrete flow model for molecular graph generation. In *International Conference on Machine Learning*. PMLR 139, 2021b.

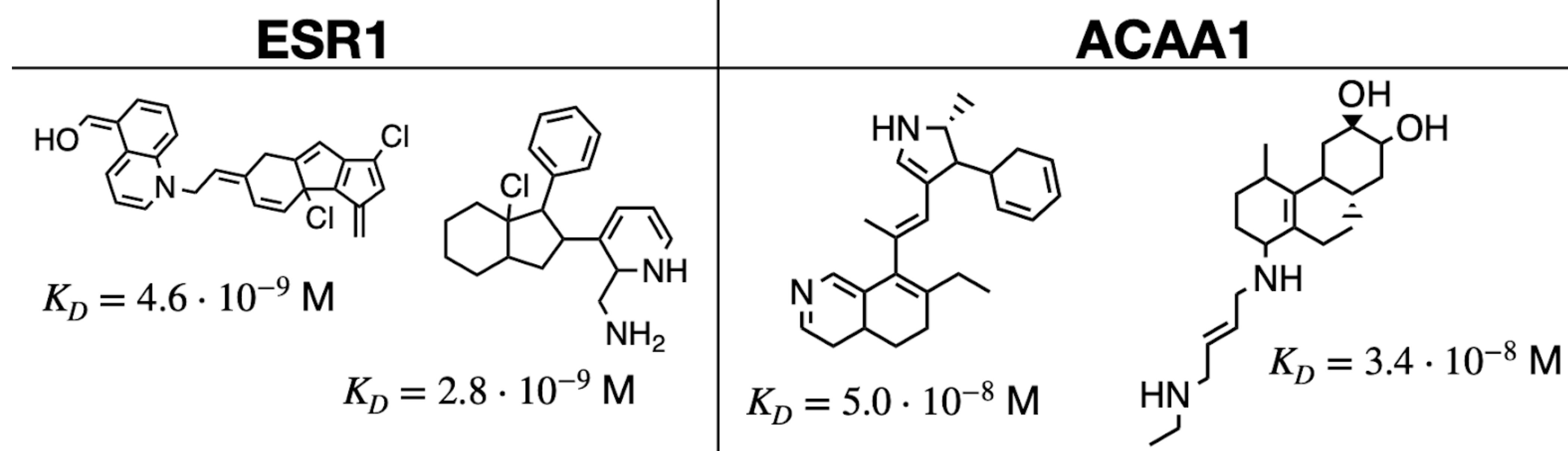
³Jin, W., Barzilay, R., and Jaakkola, T. Junction tree variational autoencoder for molecular graph generation. In *Proceedings of the 35th International Conference on Machine Learning*, 2018.

Methodology



- Directly optimize in the **latent space** to generate new molecules that have a variety of target properties
- Instead of predicting properties from the latent space, LIMO uses a **property predictor** stacked *on top of* the VAE decoder
- Fully differentiable, LIMO allows for more targeted molecule generation and accurate property prediction

Target Protein



- **Human estrogen receptor (ESR1):** a target of drugs used to treat breast cancer, has many known binders. Used a crystal structure of the protein (PDB 1ERR) for docking calculations and the location of the binding site.
- **Human peroxisomal acetyl-CoA acyl transferase 1 (ACAA1):** challenge from Structural Genomics Consortium, no known binders but does have a crystal structure (PDB 2IJK) with a potential drug-binding pocket.

Experiments

Single-objective binding affinity optimization

METHOD	ESR1			ACAA1			TIME (HRS)
	1ST	2ND	3RD	1ST	2ND	3RD	
GCPN	6.4	6.6	8.5	75	83	84	6
MOLDQN	373	588	1062	240	337	608	6
GRAPHDF	25	47	51	370	520	590	12
MARS	17	64	69	163	203	236	6
LIMO	0.72	0.89	1.4	37	37	41	1

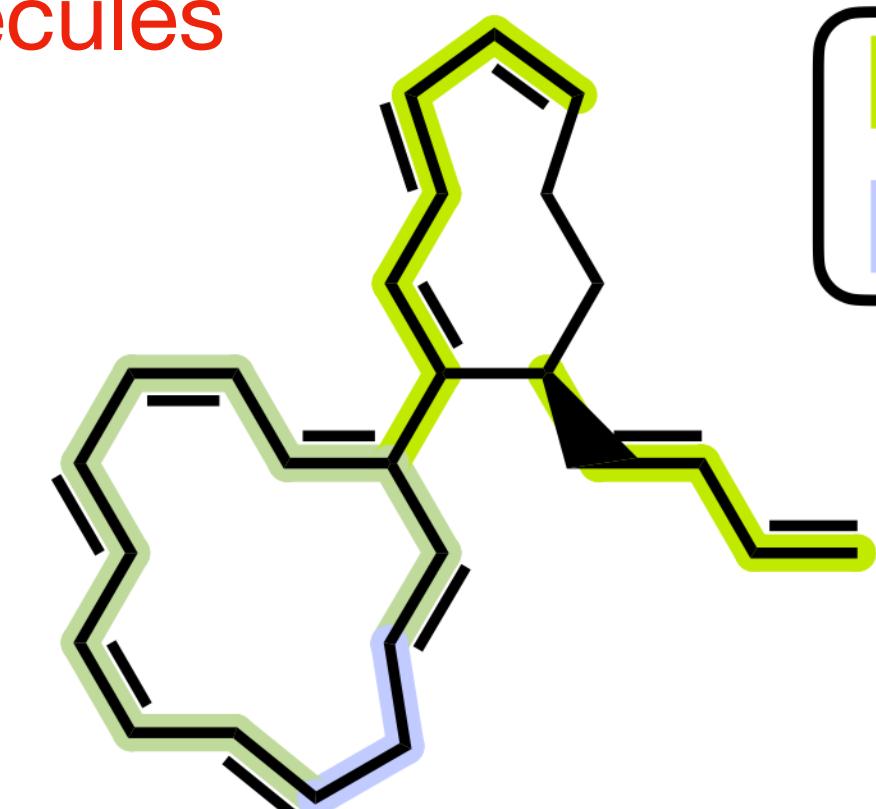
- **Task:** generate molecules with high binding affinity to a target protein, computed by a physics-based affinity estimator (AutoDock-GPU)
 - Metric: K_D , a measure of binding affinity, lower is better
 - Human estrogen receptor (ESR1) and peroxisomal acetyl-CoA acyl transferase 1 (ACAA1) are disease-relevant proteins

Experiments

Single-objective binding affinity optimization

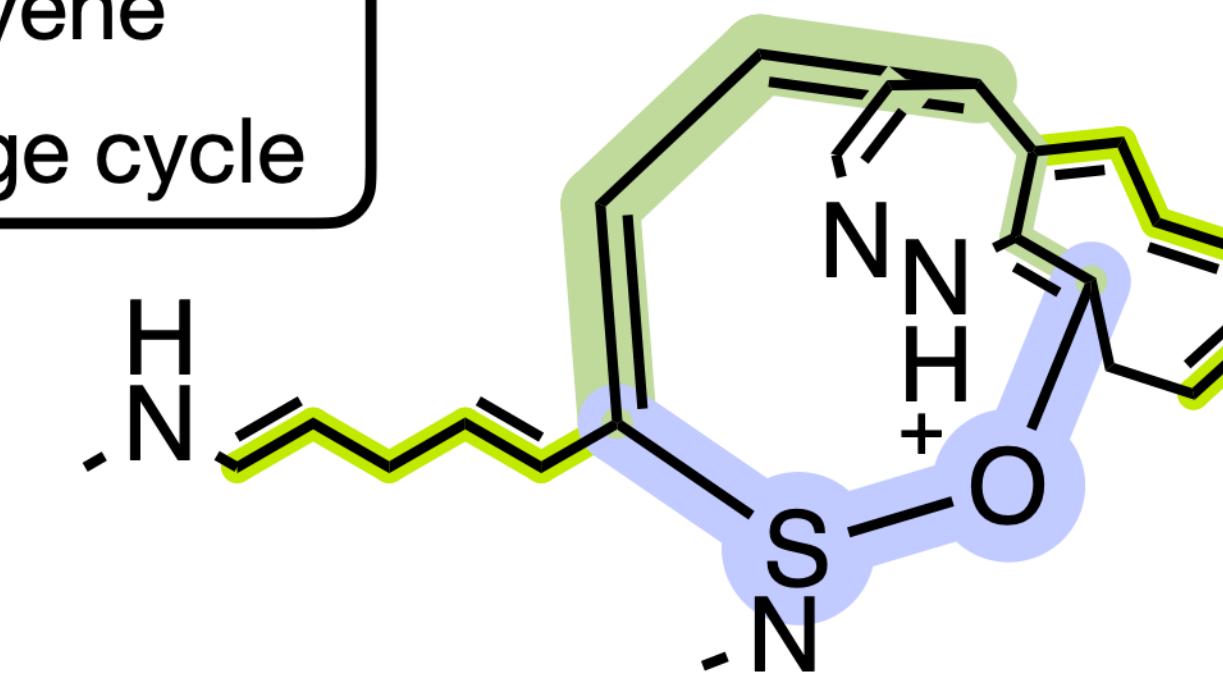
- Examples of generated molecules:

Generated molecules
are toxic...



$$K_D = 3.7 \cdot 10^{-8} \text{ M}$$

Polyene
Large cycle



$$K_D = 4.1 \cdot 10^{-8} \text{ M}$$

...and hard to synthesize!

Experiments

Multi-objective binding affinity optimization

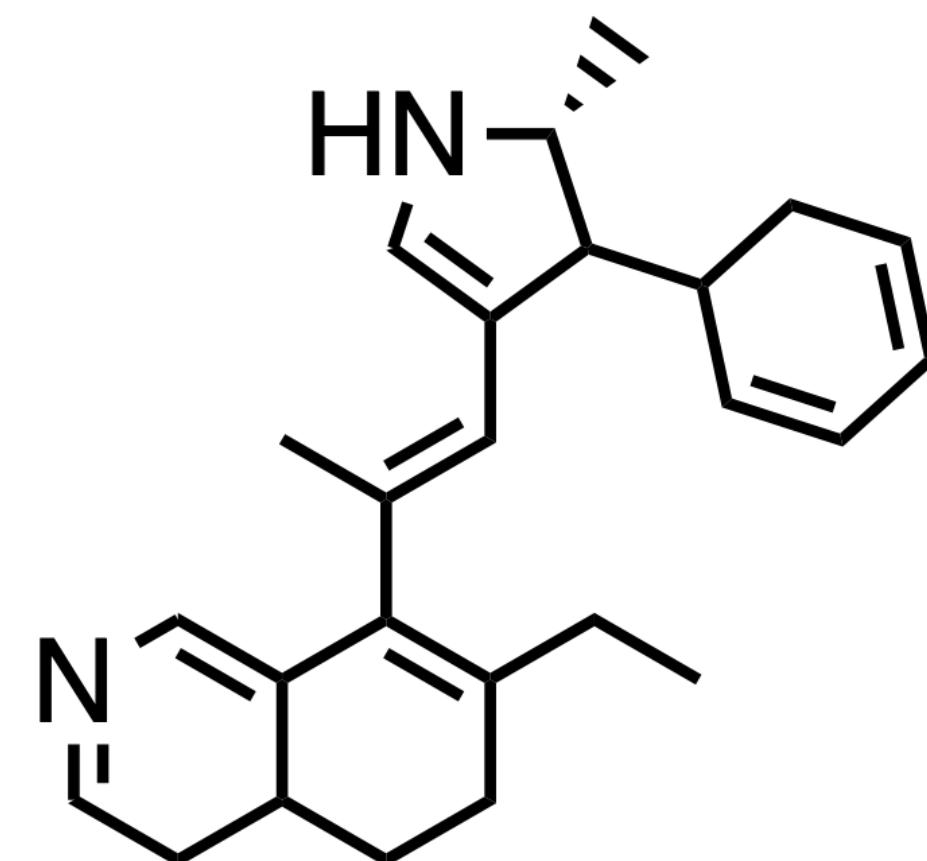
LIGAND	OPTIMIZED PROP.			NON-OPTIMIZED PROP.				
	K_D (AD) (↓)	QED (↑)	SA (↓)	K_D (ABFE) (↓)	LIPINSKI	PAINS (↓)	FSP ³ (↑)	MCE-18 (↑)
ESR1								
LIMO MOL. #1	4.6	0.43	4.8	$6 \cdot 10^{-5}$	✓	0	0.16	90
LIMO MOL. #2	2.8	0.64	4.9	1000	✓	0	0.52	76
GCPN MOL. #1	810	0.43	4.2	-	✓	0	0.29	22
GCPN MOL. #2	$2.7 \cdot 10^4$	0.80	3.7	-	✓	0	0.56	47
TAMOXIFEN	87	0.45	2.0	1.5*	✓	0	0.23	16
RALOXIFENE	$7.9 \cdot 10^6$	0.32	2.4	0.030*	✓	0	0.25	59
ACAA1								
LIMO MOL. #1	28	0.57	5.5	$4 \cdot 10^4$	✓	0	0.52	52
LIMO MOL. #2	31	0.44	4.9	NO BINDING	✓	0	0.81	45
GCPN MOL. #1	8500	0.69	4.2	-	✓	0	0.52	61
GCPN MOL. #2	8500	0.54	4.3	-	✓	0	0.52	30

- **Solution:** incorporate measures of molecule quality (synthesizability and drug-likeness) into optimization process

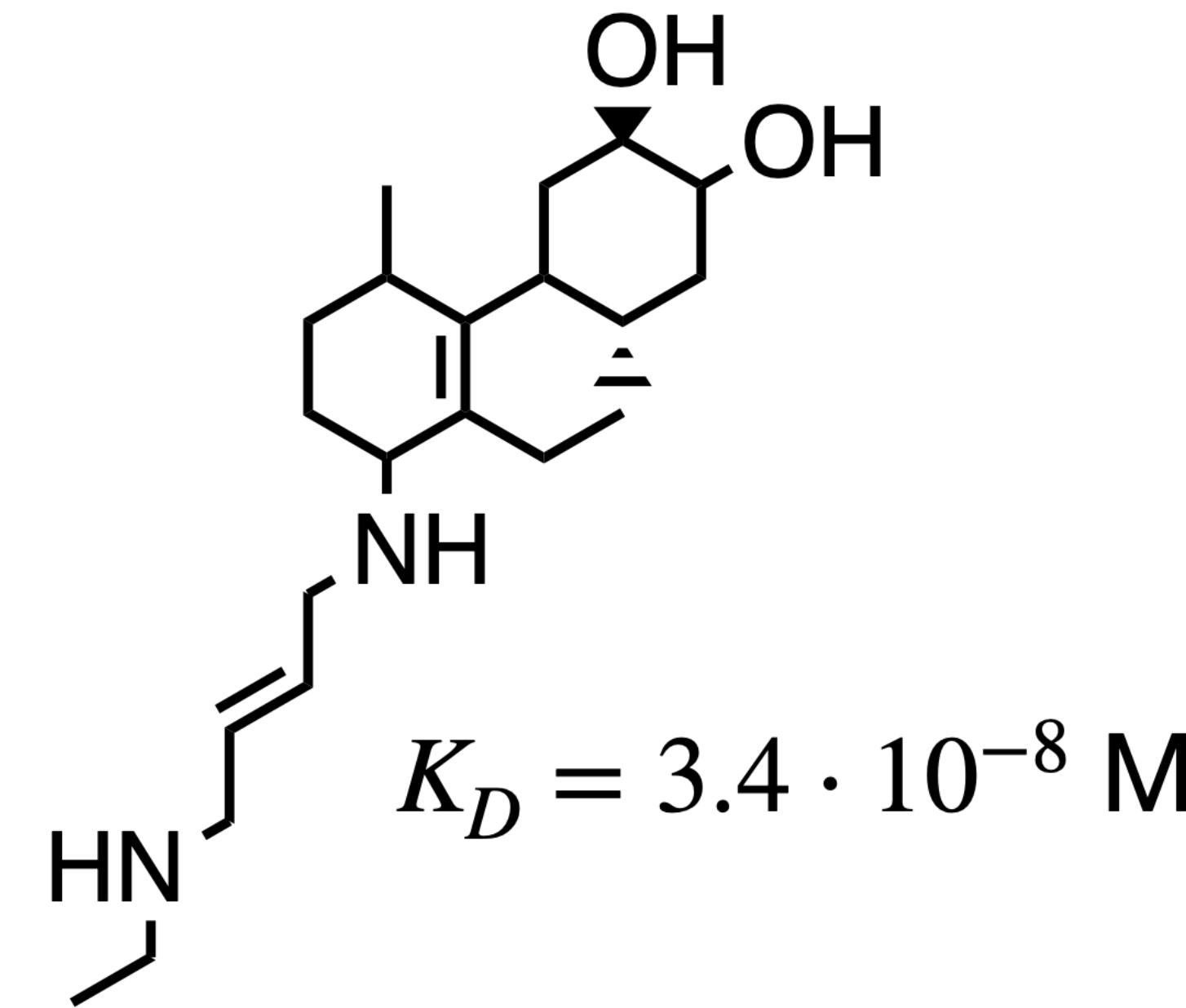
Experiments

Multi-objective binding affinity optimization

New molecules are more
synthesizable and drug-like!



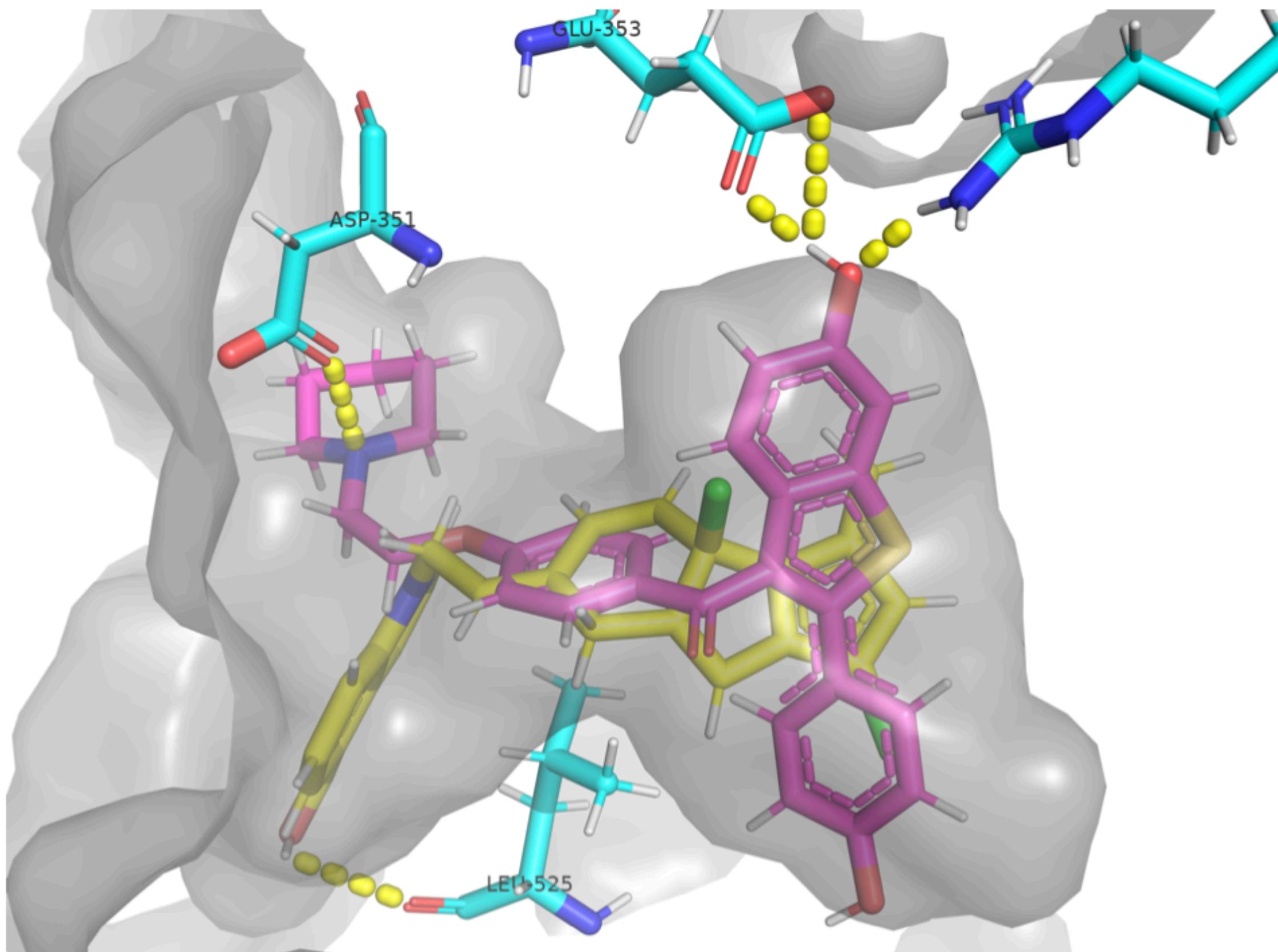
$$K_D = 5.0 \cdot 10^{-8} \text{ M}$$



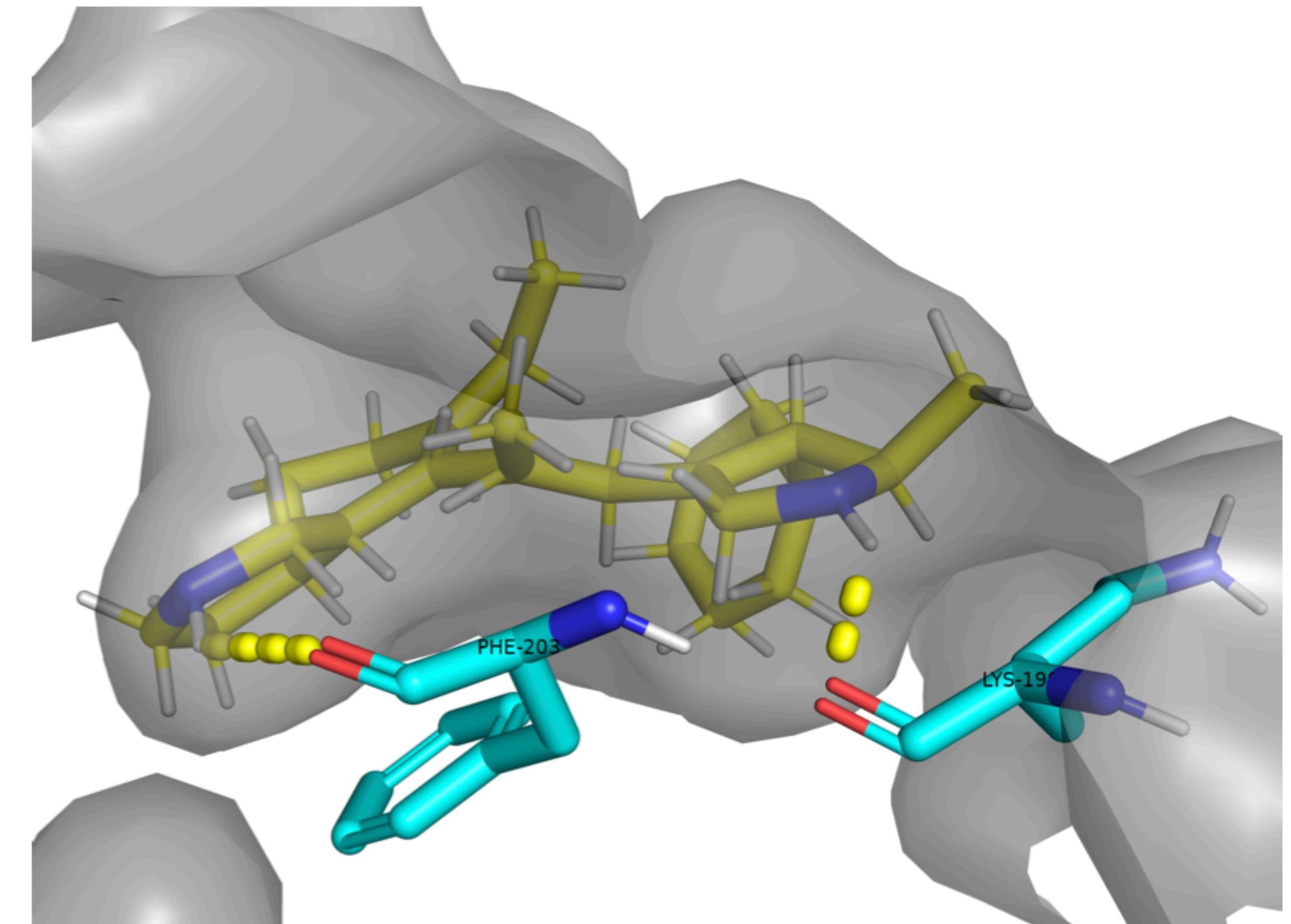
Experiments

Multi-objective binding affinity optimization

Human estrogen receptor



Human peroxisomal acetyl-CoA acyl transferase 1



Takeaways

- Two neural networks (decoder and property predictor) in sequence enables faster gradient-based reverse-optimization of molecular properties.
- Multi-objective optimization including drug-likeness and synthesizability is important for molecule generation with high binding affinity

Code available at <https://github.com/Rose-STL-Lab/LIMO>

Thank you for your attention!

LIMO: Latent Inceptionism for Targeted Molecule Generation

ICML 2022