Augment with Care: Contrastive Learning for Combinatorial Problems

Haonan Duan*, Pashootan Vaezipoor*, Max B. Paulus, Yangjun Ruan, Chris J. Maddison

Supervised learning for combinatorial problems

	Input	Label	ML model (e.g.,)
Boolean satisfiability (SAT)	$(x_1 \lor x_2 \lor \neg x_3)$ $\land (\neg x_1 \lor x_2 \lor x_3)$	SAT/UNSAT	NeuroSAT (Selsam et al, 2019)
Mixed Integer Programming	$\max x_1 - 3x_2$ s.t. $x_1 > x_2$ $x_1, x_2 \in \mathbb{Z}$	Variable assignments	Neural Diving (Nair et al, 2020)
Travelling salesman	Camada	Shortest routes	Attention Model (Kool et al, 2018)

Supervised learning for combinatorial problems

	Input	Label	ML model (e.g.,)
Boolean satisfiability (SAT)	$(x_1 \lor x_2 \lor \neg x_3)$ $\land (\neg x_1 \lor x_2 \lor x_3)$	SAT/UNSAT	NeuroSAT (Selsam et al, 2019)
Mixed Integer Programming	$\max x_1 - 3x_2$ s.t. $x_1 > x_2$ $x_1, x_2 \in \mathbb{Z}$	Variable assignments	Neural Diving (Nair et al, 2020)
Travelling salesman	Canada	Shortest routes	Attention Model (Kool et al, 2018)

Limitation:

- Combinatorial optimization is NP-hard
- Worst-case exponential complexity
- Labelling = Not scaling

Self-supervised pre-training for image and vision

• Language: BERT (Kenton et al, 2019)

BERT's Performance - SWAG (Situations With Adversarial Generations)

System	Dev	Test
BERTLARGE	86.6	86.3
Human (expert)	-	85.0
OpenAl GPT	-	78
ESIM+GloVe	51.9	52.7
ESIM+ELMo	59.1	59.2

- √ Better sample efficiency in downstream tasks
- √ Better multi-task performance
- √ Better transfer performance
- √ Better robustness
- **√**.....

• Vision: CLIP (Radford et al, 2021)

Image source: https://openai.com/blog/clip/

SimCLR: contrastive learning for image representations

Maximize the agreement between different augmented views of the same data

SimCLR: contrastive learning for image representations

Outperforming AlexNet on ImageNet using only 1% of the labels

SimCLR: contrastive learning for image representations

Outperforming AlexNet on ImageNet using only 1% of the labels

SimCLR for SAT representations?

How to design augmentations? - Image

How to design augmentations? - SAT

- Requirements: the augmentations should
 - preserve labels (satisfiability): SAT => SAT, UNSAT => UNSAT
 - efficient to compute

How to design augmentations? - SAT

- Requirements: the augmentations should
 - preserve labels (satisfiability): SAT => SAT, UNSAT => UNSAT
 - efficient to compute

• The algorithms used in preprocessing components of SAT solvers are the perfect candidate.

Label-preserving augmentations (LPAs)

- Unit propagation (UP)
- Clause resolution (CR)
- Variable elimination (VE)
- Subsumed clause elimination (SC)

•

Original	UP
$c_1 : x_1$	x_1
$c_2: x_2 \vee x_3$	$x_2 \lor x_3$
$c_3: x_1 \vee \neg x_3 \vee x_4$	$x_1 \lor \neg x_3 \lor x_4$
$c_4: \neg x_1 \lor x_2 \lor x_3 \lor \neg x_4$	$\neg x_1 \lor x_2 \lor x_3 \lor \neg x_4$
AU	SC
$\neg x_5$	
$x_5 \lor x_1$	$ x_1 $
$x_2 \lor x_3$	$x_2 \lor x_3$
$x_1 \lor \neg x_3 \lor x_4$	$x_1 \lor \neg x_3 \lor x_4$
$\neg x_1 \lor x_2 \lor x_3 \lor \neg x_4$	$\mid \neg x_1 \lor x_2 \lor x_3 \lor \neg x_4 \mid$
$\neg x_5 \lor x_1 \lor \neg x_2 \lor x_3$	
CR	VE
x_1	x_1
$x_2 \lor x_3$	$x_2 \lor x_3$
$x_1 \lor \neg x_3 \lor x_4$	$x_1 \lor \neg x_3 \lor x_4$
$\neg x_1 \lor x_2 \lor x_3 \lor \neg x_4$	$\mid \neg x_1 \lor x_2 \lor x_3 \lor \neg x_4 \mid$
$x_1 \lor x_2 \lor x_4$	$x_1 \lor x_2 \lor x_4$

Our framework

Results: pre-training improves sample efficiency by 100x

- Red line: Our pre-training + linear evaluation
- Purple line: Fully-supervised NeuroSAT

Results: pre-training improves sample efficiency by 100x

- Red line: Our pre-training + linear evaluation
- Purple line: Fully-supervised NeuroSAT
- Red with 100 labels > Purple with 10000 labels
- More datasets and settings? Check out our paper

Label-preserving augmentations are necessary

- Label-agnostic augmentations (LAAs):
 - Node dropping/adding
 - Edge perturbations
 - Subgraph

Label-preserving augmentations are necessary

- Label-agnostic augmentations (LAAs):
 - Node dropping/adding
 - Edge perturbations
 - Subgraph

Best LPA (95.1) >> Best LAA (54.4)

Thanks!

Chat with us at our poster session: 6-8pm, Hall E #403