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o Widely used in kernel-based learning, statistics and control

o Classical machine learning tool with real-world applications
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o Kernel: a similarity function over pairs of data points in raw representation

o Mercer decomposition: for every kernel                             and 

o is called a feature map



o Kernel: a similarity function over pairs of data points in raw representation

o Mercer decomposition: for every kernel                             and 

o is called a feature map

o Kernel ridge regression:

o Simple yet powerful tool for learning non-linear relationships between 
data points



o Kernel methods are expensive

o Computing all kernel entries take                                    time

o Even writing it down takes              time and            memory

o A single iteration of a linear system solver takes            time

o For                      ,      has 10 billion entries. Take 80 GB of storage!
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o Orthogonalization, eigen-decomposition and pseudo-inversion of 
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low-rank
approximation



o Storing     uses              space and computing              takes              time

o Orthogonalization, eigen-decomposition and pseudo-inversion of 
all take just                time

o Our approach:

o a low-rank approximation based on series expansion of Gegenbauer
polynomials and their reproducing property

low-rank
approximation



o Extend the zonal kernels from 𝕊𝑑−1 to ℝ𝑑 (that contains dot-product, 
Gaussian, Neural Tangent kernels) and derive the Mercer decomposition 
based on Gegenbauer polynomials

o Introduce random feature approach and provide spectral approximation
(for kernel ridge regression) and projection-cost preserving approximation
(for kernel 𝑘-mean clustering) guarantees

o Achieve the best sample complexity for spectrally approximating 
Gaussian kernel compared to the prior known methods when input 
dimension is small
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o Gegenbauer polynomials                    : a family of orthogonal polynomials

o : dimension parameter, 

o : surface area of
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o Reproducing property: for any

o (dimension of spherical harmonics)

o : uniform distribution over
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o Reproducing property: for any

o (dimension of spherical harmonics)

o : uniform distribution over

o Gegenbauer polynomial kernel has a feature map as

such that
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o Reproducing property: for any

o (dimension of spherical harmonics)

o : uniform distribution over

o Gegenbauer polynomials can span all positive definite dot-product 
kernels on          :
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Theorem [Schoenberg, 1941]. Consider a function 
and a kernel function                                 . The kernel    defined on 𝕊𝑑−1 is 
positive definite if and only if             .



o Reproducing property: for any

o Zonal kernel: if                                  for some  
(⇔ Dot-product kernels with a restriction of inputs)
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o Reproducing property: for any

o Zonal kernel: if                                  for some  
(⇔ Dot-product kernels with a restriction of inputs)

o Suppose the series expansion with Gegenbauer polynomials:

(*    with                                                   has the unique series expansion)
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o Reproducing property: for any

o Zonal kernel: if                                  for some  
(⇔ Dot-product kernels with a restriction of inputs)

o Suppose the series expansion with Gegenbauer polynomials:

o The feature map of zonal kernels:

such that
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For positive semidefinite 
kernel, 𝑐ℓ ≥ 0



o Feature map of zonal kernel: for                                        and 

o Goal: design a low-rank kernel approximation

o Given                               , 
draw i.i.d.                                          and
compute 
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o Feature map of zonal kernel: for                                        and 

o Goal: design a low-rank kernel approximation

o Given                               , 
draw i.i.d.                                          and
compute 

o Challenge: Can we extend zonal kernel functions to ℝ𝑑 ?
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o Generalized zonal kernel: for any and                        for
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o Generalized zonal kernel: for any and                        for

o This includes all dot-product kernels, i.e., 
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Lemma. For any                  and an analytic function                   , define

Then,



o Generalized zonal kernel: for any and                        for

o Feature map of generalized zonal kernel:

o When               , this falls into the feature map of zonal kernel
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o Generalized zonal kernel: for any and                        for

o Random features of generalized zonal kernel:

o Given                            , draw i.i.d.                                          and compute
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o Generalized zonal kernel: for any and                        for

o Random features of generalized zonal kernel:

o Given                            , draw i.i.d.                                          and compute

o Goal: how many random vectors are needed? (lower bound on 𝑚)
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o Spectral approximation of GZK:

o Spectral approximation can directly guarantee empirical risk bound of 
kernel ridge regression
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Theorem. For any                            , let                                             . For any 
, if 

Then,



o Projection-cost preserving approximation of GZK:

o Projection cost preserving approximation can be used for kernel 𝑘-
means clustering, principal component analysis (PCA)

24

Theorem. For any                            , let                                             .  For any 
positive integer   , let                                where                          are 
eigenvalues of    . For all rank-𝑟 orthonormal projection matrices 
and for any                if

Then,



o Spectral approximation of the Gaussian kernels:
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Theorem. Given                            , assume that                                . Let 
and                                                   . For                            , let   

and for any              , if

Then,



o Comparison to prior results
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Method Feature dimension (𝑚) Runtime

Gegenbauer features
(Our work)

Fourier features
(RR’07)

Modified Fourier 
features

(AKMMVZ’17)

PolySketch
(AKKPVWZ’20)

Adaptive Sketch
(WZ’20)
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o Kernel ridge regression with Gaussian kernel

o Random Gegenbauer features achieve the best MSE except 
“Elevation” and “Protein” datasets

o For “Protein” dataset (larger 𝑑), Nystrom method is the best
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MSE of kernel ridge regression and runtime for kernel approximation



o Kernel 𝒌-means clustering with Gaussian kernel

o Random Gegenbauer features show the promising performance 
except “Mushroom” and “Connect-4” datasets which have a higher 
input dimension
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The average sum of squared distance to the nearest cluster centers



o Summary:

o We study a new class of kernels expressed by Gegenbauer
polynomials that covers a wide range of ubiquitous kernels

o We analyze that our random features can spectrally approximate 
kernel matrices, making it useful for scalable kernel methods

o One limitation is that it can tightly approximate when the inputs are in 
a low-dimensional space

o Future work:

o Our limitation can be resolved by combining with additional 

dimensionality reductions (e.g., JL-transform)


