Random Gegenbauer Features for Scalable Kernel Methods

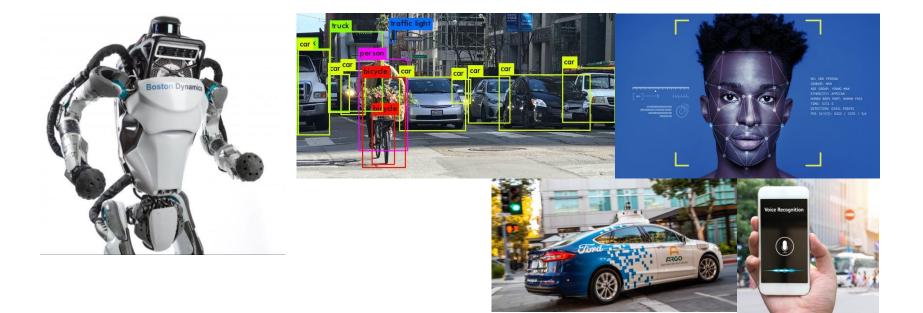
Insu Han[®], Amir Zandieh[®], Haim Avron^{*}

Yale University
 Max-Planck-Institute
 Tel Aviv University

ICML 2022

Kernel Methods

Widely used in kernel-based learning, statistics and control
 Classical machine learning tool with real-world applications



Kernel Regression

• **Kernel:** a similarity function over pairs of data points in raw representation o Mercer decomposition: for every kernel $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ and $x, x' \in \mathbb{R}^d$

$$k(x, x') = \langle \phi(x), \phi(x') \rangle$$

o ϕ is called a feature map

Kernel Regression

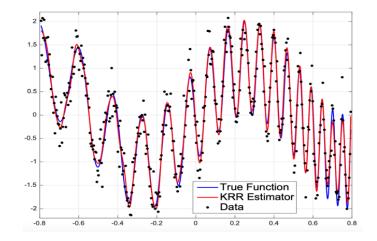
• **Kernel:** a similarity function over pairs of data points in raw representation o Mercer decomposition: for every kernel $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ and $x, x' \in \mathbb{R}^d$

 $k(x, x') = \langle \phi(x), \phi(x') \rangle$

o ϕ is called a feature map

• Kernel ridge regression:

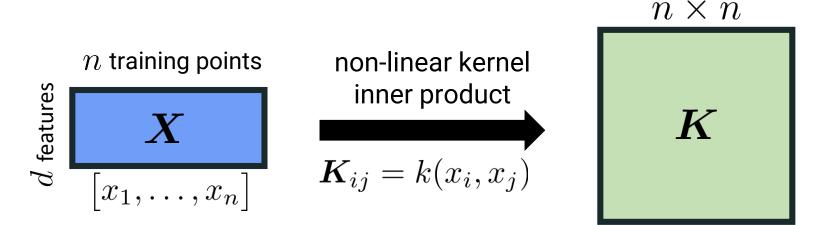
$$w^* = \underset{w}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (y_i - \phi(x_i)^{\top} w)^2 + \lambda \|w\|^2$$



o Simple yet powerful tool for learning non-linear relationships between data points

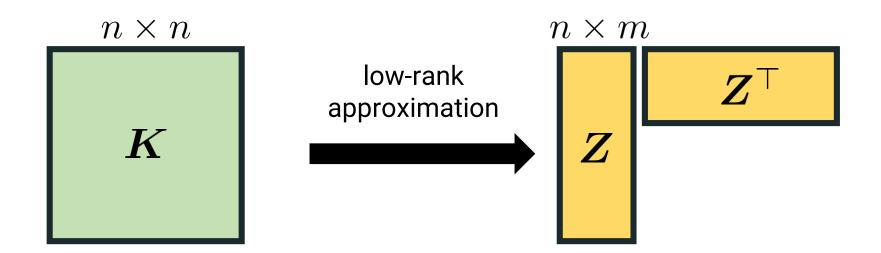
Scalability of Kernel Methods

o Kernel methods are expensive



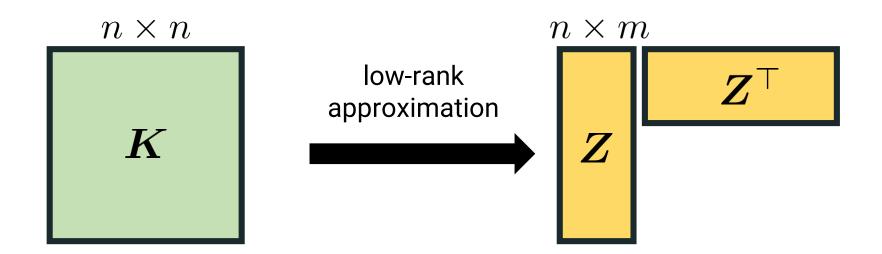
Computing all kernel entries take Ω(n · nnz(X) + n²) time
Even writing it down takes Ω(n²d) time and Ω(n²) memory
A single iteration of a linear system solver takes Ω(n²) time
For n = 100,000, K has 10 billion entries. Take 80 GB of storage!

Classical Solution: Dimensionality Reduction



- \circ Storing Z uses $\mathcal{O}(nm)$ space and computing $Z^{\top}Zx$ takes $\mathcal{O}(nm)$ time
- $\circ\,$ Orthogonalization, eigen-decomposition and pseudo-inversion of $\pmb{Z}\pmb{Z}^{\top}$ all take just $\mathcal{O}(nm^2)$ time

Classical Solution: Dimensionality Reduction



- \circ Storing Z uses $\mathcal{O}(nm)$ space and computing $Z^{\top}Zx$ takes $\mathcal{O}(nm)$ time
- $\circ\,$ Orthogonalization, eigen-decomposition and pseudo-inversion of ZZ^{\top} all take just $\mathcal{O}(nm^2)$ time

• Our approach:

 a low-rank approximation based on series expansion of Gegenbauer polynomials and their reproducing property

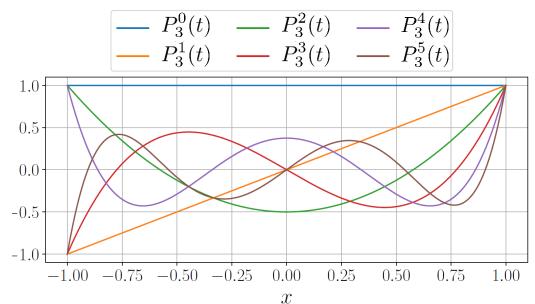
Overview of Our Contributions

- \circ Extend the zonal kernels from \mathbb{S}^{d-1} to \mathbb{R}^d (that contains dot-product, Gaussian, Neural Tangent kernels) and derive the Mercer decomposition based on Gegenbauer polynomials
- Introduce random feature approach and provide spectral approximation (for kernel ridge regression) and projection-cost preserving approximation (for kernel *k*-mean clustering) guarantees
- Achieve the best sample complexity for spectrally approximating Gaussian kernel compared to the prior known methods when input dimension is small

• Gegenbauer polynomials $\{P_d^{\ell}(\cdot)\}_{\ell \geq 0}$: a family of orthogonal polynomials

$$\int_{-1}^{1} P_d^{\ell}(t) P_d^m(t) (1-t^2)^{\frac{d-3}{2}} dt = \frac{\left|\mathbb{S}^{d-1}\right|}{\alpha_{\ell,d} \left|\mathbb{S}^{d-2}\right|} \cdot \mathbb{1}_{\{\ell=m\}}$$

d: dimension parameter, α_{ℓ,d} = (^{d+ℓ-1}_ℓ) − (^{d+ℓ-3}_{ℓ-2})
 |S^{d-1}|: surface area of S^{d-1}



 \circ **Reproducing property:** for any $x, y \in \mathbb{S}^{d-1}$

$$P_d^{\ell}(\langle x, y \rangle) = \alpha_{\ell, d} \underset{w \sim \mathcal{U}(\mathbb{S}^{d-1})}{\mathbb{E}} \left[P_d^{\ell}\left(\langle x, w \rangle\right) \cdot P_d^{\ell}\left(\langle y, w \rangle\right) \right]$$

 $\circ \alpha_{\ell,d} = \binom{d+\ell-1}{\ell} - \binom{d+\ell-3}{\ell-2}$ (dimension of spherical harmonics) $\circ \mathcal{U}(\mathbb{S}^{d-1})$: uniform distribution over \mathbb{S}^{d-1}

 \circ **Reproducing property:** for any $x, y \in \mathbb{S}^{d-1}$

$$P_d^{\ell}(\langle x, y \rangle) = \alpha_{\ell, d} \mathop{\mathbb{E}}_{w \sim \mathcal{U}(\mathbb{S}^{d-1})} \left[P_d^{\ell}\left(\langle x, w \rangle\right) \cdot P_d^{\ell}\left(\langle y, w \rangle\right) \right]$$

 $\alpha_{\ell,d} = \binom{d+\ell-1}{\ell} - \binom{d+\ell-3}{\ell-2}$ (dimension of spherical harmonics)
 U(S^{d-1}): uniform distribution over S^{d-1}

Gegenbauer polynomial kernel has a feature map as

$$\phi_x(w) = \sqrt{\alpha_{\ell,d}} \cdot P_d^\ell(\langle x, w \rangle)$$

such that $\mathbb{E}_{w \sim \mathcal{U}(\mathbb{S}^{d-1})} \left[\phi_x(w) \cdot \phi_y(w) \right] = P_d^{\ell}(\langle x, y \rangle)$

 \circ **Reproducing property:** for any $x, y \in \mathbb{S}^{d-1}$

$$P_d^{\ell}(\langle x, y \rangle) = \alpha_{\ell, d} \mathop{\mathbb{E}}_{w \sim \mathcal{U}(\mathbb{S}^{d-1})} \left[P_d^{\ell}\left(\langle x, w \rangle\right) \cdot P_d^{\ell}\left(\langle y, w \rangle\right) \right]$$

 $\alpha_{\ell,d} = \binom{d+\ell-1}{\ell} - \binom{d+\ell-3}{\ell-2}$ (dimension of spherical harmonics)
 U(S^{d-1}): uniform distribution over S^{d-1}

 \circ Gegenbauer polynomials can span all positive definite dot-product kernels on \mathbb{S}^{d-1} :

Theorem [Schoenberg, 1941]. Consider a function $\kappa(t) = \sum_{\ell=0}^{\infty} b_{\ell} P_{\ell}^{d}(t)$ and a kernel function $k(x, y) = \kappa(\langle x, y \rangle)$. The kernel k defined on \mathbb{S}^{d-1} is positive definite if and only if $b_{\ell} \geq 0$.

 \circ **Reproducing property:** for any $x, y \in \mathbb{S}^{d-1}$

$$P_d^{\ell}(\langle x, y \rangle) = \alpha_{\ell, d} \mathop{\mathbb{E}}_{w \sim \mathcal{U}(\mathbb{S}^{d-1})} \left[P_d^{\ell}\left(\langle x, w \rangle\right) \cdot P_d^{\ell}\left(\langle y, w \rangle\right) \right]$$

○ **Zonal kernel:** $k : \mathbb{S}^{d-1} \times \mathbb{S}^{d-1} \to \mathbb{R}$ if $k(x, y) = \kappa(\langle x, y \rangle)$ for some $\kappa : \mathbb{R} \to \mathbb{R}$ (⇔ <u>Dot-product</u> kernels with a restriction of inputs)

 \circ **Reproducing property:** for any $x, y \in \mathbb{S}^{d-1}$

$$P_d^{\ell}(\langle x, y \rangle) = \alpha_{\ell, d} \mathop{\mathbb{E}}_{w \sim \mathcal{U}(\mathbb{S}^{d-1})} \left[P_d^{\ell}\left(\langle x, w \rangle\right) \cdot P_d^{\ell}\left(\langle y, w \rangle\right) \right]$$

○ Zonal kernel: $k : \mathbb{S}^{d-1} \times \mathbb{S}^{d-1} \to \mathbb{R}$ if $k(x, y) = \kappa(\langle x, y \rangle)$ for some $\kappa : \mathbb{R} \to \mathbb{R}$ (⇔ <u>Dot-product</u> kernels with a restriction of inputs)

Suppose the series expansion with Gegenbauer polynomials:

$$\kappa(t) = \sum_{\ell=0}^{\infty} c_{\ell} \cdot P_d^{\ell}(t)$$

$$c_{\ell} = \alpha_{\ell,d} \cdot \frac{|\mathbb{S}^{d-2}|}{|\mathbb{S}^{d-1}|} \cdot \int_{-1}^{1} \frac{\kappa(t)}{\kappa(t)} P_{d}^{\ell}(t) (1-t^{2})^{\frac{d-3}{2}} dt$$

(* κ with $\int_{-1}^{1} |\kappa(t)|^2 (1-t^2)^{\frac{d-3}{2}} dt < \infty$ has the unique series expansion)

 \circ **Reproducing property:** for any $x, y \in \mathbb{S}^{d-1}$

$$P_d^{\ell}(\langle x, y \rangle) = \alpha_{\ell, d} \mathop{\mathbb{E}}_{w \sim \mathcal{U}(\mathbb{S}^{d-1})} \left[P_d^{\ell}\left(\langle x, w \rangle\right) \cdot P_d^{\ell}\left(\langle y, w \rangle\right) \right]$$

○ Zonal kernel: $k : \mathbb{S}^{d-1} \times \mathbb{S}^{d-1} \to \mathbb{R}$ if $k(x, y) = \kappa(\langle x, y \rangle)$ for some $\kappa : \mathbb{R} \to \mathbb{R}$ (⇔ <u>Dot-product</u> kernels with a restriction of inputs)

Suppose the series expansion with Gegenbauer polynomials:

$$\frac{\kappa(t)}{\kappa(t)} = \sum_{\ell=0}^{\infty} c_{\ell} \cdot P_d^{\ell}(t)$$

• The feature map of zonal kernels:

For positive semidefinite kernel, $c_{\ell} \ge 0$

$$\phi_x(w) = \sum_{\ell=0}^{\infty} \sqrt{c_\ell \cdot \alpha_{\ell,d}} \cdot P_d^\ell(\langle x, w \rangle)$$

such that $\mathbb{E}_{w \sim \mathcal{U}(\mathbb{S}^{d-1})} \left[\phi_x(w) \cdot \phi_y(w) \right] = \kappa(\langle x, y \rangle)$

• Feature map of zonal kernel: for $\kappa(t) = \sum_{\ell=0}^{\infty} c_{\ell} \cdot P_d^{\ell}(t)$ and $x, y \in \mathbb{S}^{d-1}$

$$\phi_x(w) = \sum_{\ell=0}^{\infty} \sqrt{c_\ell \alpha_{\ell,d}} P_d^\ell(\langle x, w \rangle) \quad \Rightarrow \quad \underset{w \sim \mathcal{U}(\mathbb{S}^{d-1})}{\mathbb{E}} \left[\phi_x(w) \phi_y(w) \right] = \kappa(\langle x, y \rangle)$$

o Goal: design a low-rank kernel approximation

 \circ Given $x_1, \ldots, x_n \in \mathbb{S}^{d-1}$, draw i.i.d. $w_1, \ldots, w_m \sim \mathcal{U}(\mathbb{S}^{d-1})$ and compute $oldsymbol{K} pprox oldsymbol{Z} oldsymbol{Z}^ op oldsymbol{K}$ $[oldsymbol{K}]_{ij} = \kappa(\langle x_i, x_j
angle)$

$$\boldsymbol{Z} = \begin{bmatrix} \phi_{x_1}(w_1) & \cdots & \phi_{x_1}(w_m) \\ \vdots & \ddots & \vdots \\ \phi_{x_n}(w_1) & \cdots & \phi_{x_n}(w_m) \end{bmatrix} \quad \Rightarrow \quad \mathbb{E} \left[\boldsymbol{Z} \boldsymbol{Z}^\top \right] = \boldsymbol{K}$$

• Feature map of zonal kernel: for $\kappa(t) = \sum_{\ell=0}^{\infty} c_{\ell} \cdot P_d^{\ell}(t)$ and $x, y \in \mathbb{S}^{d-1}$

$$\phi_x(w) = \sum_{\ell=0}^{\infty} \sqrt{c_\ell \alpha_{\ell,d}} P_d^\ell(\langle x, w \rangle) \quad \Rightarrow \quad \underset{w \sim \mathcal{U}(\mathbb{S}^{d-1})}{\mathbb{E}} \left[\phi_x(w) \phi_y(w) \right] = \kappa(\langle x, y \rangle)$$

o Goal: design a low-rank kernel approximation

 \circ Given $x_1, \ldots, x_n \in \mathbb{S}^{d-1}$, draw i.i.d. $w_1, \ldots, w_m \sim \mathcal{U}(\mathbb{S}^{d-1})$ and compute

$$\boldsymbol{Z} = \begin{bmatrix} \phi_{x_1}(w_1) & \cdots & \phi_{x_1}(w_m) \\ \vdots & \ddots & \vdots \\ \phi_{x_n}(w_1) & \cdots & \phi_{x_n}(w_m) \end{bmatrix} \quad \Rightarrow \quad \mathbb{E}\left[\boldsymbol{Z}\boldsymbol{Z}^{\top}\right] = \boldsymbol{K}$$

• **Challenge:** Can we extend zonal kernel functions to \mathbb{R}^d ?

• Generalized zonal kernel: for any $x, y \in \mathbb{R}^d$ and $h_\ell : \mathbb{R} \to \mathbb{R}^s$ for $\ell = 0, 1, ...$

$$k(x,y) = \sum_{\ell=0}^{\infty} \left\langle h_{\ell}(\|x\|), h_{\ell}(\|y\|) \right\rangle P_{d}^{\ell}\left(\frac{\langle x, y \rangle}{\|x\| \|y\|}\right)$$

• Generalized zonal kernel: for any $x, y \in \mathbb{R}^d$ and $h_\ell : \mathbb{R} \to \mathbb{R}^s$ for $\ell = 0, 1, ...$

$$k(x,y) = \sum_{\ell=0}^{\infty} \left\langle h_{\ell}(\|x\|), h_{\ell}(\|y\|) \right\rangle P_{d}^{\ell}\left(\frac{\langle x, y \rangle}{\|x\| \|y\|}\right)$$

 \circ This includes all dot-product kernels, i.e., $k(x,y) = \kappa(\langle x,y \rangle), x, y \in \mathbb{R}^d$

Lemma. For any $x, y \in \mathbb{R}^d$ and an analytic function $\kappa : \mathbb{R} \to \mathbb{R}$, define $\widetilde{h}_{\ell,i}(t) := \sqrt{\frac{\alpha_{\ell,d}}{2^\ell}} \frac{\Gamma(\frac{d}{2}) \kappa^{(\ell+2i)}(0)}{\sqrt{\pi}(2i)!} \frac{\Gamma(i+\frac{1}{2})}{\Gamma(i+\ell+\frac{d}{2})} \cdot t^{\ell+2i}$ Then, $\kappa(\langle x, y \rangle) = \sum_{\ell=0}^{\infty} \left(\sum_{i=0}^{\infty} \widetilde{h}_{\ell,i}(||x||) \widetilde{h}_{\ell,i}(||y||) \right) P_d^\ell\left(\frac{\langle x, y \rangle}{||x|| ||y||}\right)$

• Generalized zonal kernel: for any $x, y \in \mathbb{R}^d$ and $h_\ell : \mathbb{R} \to \mathbb{R}^s$ for $\ell = 0, 1, ...$

$$k(x,y) = \sum_{\ell=0}^{\infty} \left\langle h_{\ell}(\|x\|), h_{\ell}(\|y\|) \right\rangle P_{d}^{\ell}\left(\frac{\langle x, y \rangle}{\|x\| \|y\|}\right)$$

• Feature map of generalized zonal kernel:

$$\phi_x(w) = \sum_{\ell=0}^{\infty} \sqrt{\alpha_{\ell,d}} \ h_\ell(\|x\|) \ P_d^\ell\left(\frac{\langle x,w\rangle}{\|x\|}\right)$$

$$\Rightarrow \qquad \underset{w \sim \mathcal{U}(\mathbb{S}^{d-1})}{\mathbb{E}} \left[\phi_x(w) \cdot \phi_y(w) \right] = \kappa(\langle x, y \rangle)$$

 \circ When ||x|| = 1, this falls into the feature map of zonal kernel

 \circ Generalized zonal kernel: for any $x, y \in \mathbb{R}^d$ and $h_\ell : \mathbb{R} \to \mathbb{R}^s$ for $\ell = 0, 1, \ldots$

$$k(x,y) = \sum_{\ell=0}^{\infty} \left\langle h_{\ell}(\|x\|), h_{\ell}(\|y\|) \right\rangle P_{d}^{\ell}\left(\frac{\langle x, y \rangle}{\|x\| \|y\|}\right)$$

• Random features of generalized zonal kernel:

• Given $x_1, \ldots, x_n \in \mathbb{R}^d$, draw i.i.d. $w_1, \ldots, w_m \sim \mathcal{U}(\mathbb{S}^{d-1})$ and compute

$$\boldsymbol{Z} = \begin{bmatrix} \phi_{x_1}(w_1) & \cdots & \phi_{x_1}(w_m) \\ \vdots & \ddots & \vdots \\ \phi_{x_n}(w_1) & \cdots & \phi_{x_n}(w_m) \end{bmatrix} \quad \Rightarrow \quad \mathbb{E} \begin{bmatrix} \boldsymbol{Z} \boldsymbol{Z}^\top \end{bmatrix} = \boldsymbol{K} \\ [\boldsymbol{K}]_{ij} = k(x_i, x_j)$$

 \circ Generalized zonal kernel: for any $x, y \in \mathbb{R}^d$ and $h_\ell : \mathbb{R} \to \mathbb{R}^s$ for $\ell = 0, 1, \ldots$

$$k(x,y) = \sum_{\ell=0}^{\infty} \left\langle h_{\ell}(\|x\|), h_{\ell}(\|y\|) \right\rangle P_{d}^{\ell}\left(\frac{\langle x, y \rangle}{\|x\| \|y\|}\right)$$

• Random features of generalized zonal kernel:

• Given $x_1, \ldots, x_n \in \mathbb{R}^d$, draw i.i.d. $w_1, \ldots, w_m \sim \mathcal{U}(\mathbb{S}^{d-1})$ and compute

$$\boldsymbol{Z} = \begin{bmatrix} \phi_{x_1}(w_1) & \cdots & \phi_{x_1}(w_m) \\ \vdots & \ddots & \vdots \\ \phi_{x_n}(w_1) & \cdots & \phi_{x_n}(w_m) \end{bmatrix} \quad \Rightarrow \quad \mathbb{E} \begin{bmatrix} \boldsymbol{Z} \boldsymbol{Z}^\top \end{bmatrix} = \boldsymbol{K} \\ [\boldsymbol{K}]_{ij} = k(x_i, x_j)$$

• Goal: how many random vectors are needed? (lower bound on m)

Spectral approximation of GZK:

Theorem. For any $0 < \lambda < \|\mathbf{K}\|_{op}$, let $s_{\lambda} := \operatorname{Tr}(\mathbf{K}(\mathbf{K} + \lambda \mathbf{I})^{-1}))$. For any $\delta, \varepsilon > 0$, if $m \ge \frac{8}{3\varepsilon^2} \log \frac{16s_{\lambda}}{\delta} \cdot \sum_{\ell=0}^{\infty} \alpha_{\ell,d} \min \left\{ \frac{\pi^2(\ell+1)^2}{6\lambda} \sum_{j \in [n]} \|h_{\ell}(\|x_j\|)\|^2, s \right\}$ Then, $\Pr\left[(1-\varepsilon)(\mathbf{Z}\mathbf{Z}^{\top} + \lambda \mathbf{I}) \preceq \mathbf{K} + \lambda \mathbf{I} \preceq (1+\varepsilon)(\mathbf{Z}\mathbf{Z}^{\top} + \lambda \mathbf{I}) \right] \ge 1 - \delta$

 Spectral approximation can directly guarantee empirical risk bound of kernel ridge regression

Projection-cost preserving approximation of GZK:

Theorem. For any $0 < \lambda < ||\mathbf{K}||_{op}$, let $s_{\lambda} := \operatorname{Tr}(\mathbf{K}(\mathbf{K} + \lambda \mathbf{I})^{-1}))$. For any positive integer r, let $\lambda := \frac{1}{r} \sum_{i=r+1}^{n} \lambda_i$ where $\lambda_1 \ge \cdots \ge \lambda_n$ are eigenvalues of \mathbf{K} . For all rank-r orthonormal projection matrices $\mathbf{P} \in \mathbb{R}^{n \times n}$ and for any $\delta, \varepsilon > 0$ if

$$m \ge \frac{8}{3\varepsilon^2} \log \frac{16s_\lambda}{\delta} \cdot \sum_{\ell=0}^{\infty} \alpha_{\ell,d} \min \left\{ \frac{\pi^2(\ell+1)^2}{6\lambda} \sum_{j \in [n]} \|h_\ell(\|x_j\|)\|^2, s \right\}$$

Then,

$$\Pr\left[(1 - \varepsilon) \le \frac{\operatorname{Tr}(\boldsymbol{Z}\boldsymbol{Z}^{\top} - \boldsymbol{P}\boldsymbol{Z}\boldsymbol{Z}^{\top}\boldsymbol{P})}{\operatorname{Tr}(\boldsymbol{K} - \boldsymbol{P}\boldsymbol{K}\boldsymbol{P})} \le (1 + \varepsilon) \right] \ge 1 - \delta$$

 Projection cost preserving approximation can be used for kernel kmeans clustering, principal component analysis (PCA)

• Spectral approximation of the Gaussian kernels:

Theorem. Given $x_1, \ldots, x_n \in \mathbb{R}^d$, assume that $\max_{i \in [n]} ||x_i|| \leq r$. Let $K \in \mathbb{R}^{n \times n}$ and $[K]_{ij} = \exp(-||x_i - x_j||^2/2)$. For $0 < \lambda < ||K||_{op}$, let $s_{\lambda} := \operatorname{tr}(K(K + \lambda I)^{-1}))$ and for any $\delta, \varepsilon > 0$, if

$$m = \Omega\left(\frac{\left(2\log\frac{n}{\lambda}\right)^d + \left(1.93r\right)^{2d}}{(d-1)!}\right)$$

Then,

$$\Pr\left[(1-\varepsilon)(\boldsymbol{Z}\boldsymbol{Z}^{\top}+\lambda\boldsymbol{I}) \leq \boldsymbol{K}+\lambda\boldsymbol{I} \leq (1+\varepsilon)(\boldsymbol{Z}\boldsymbol{Z}^{\top}+\lambda\boldsymbol{I})\right] \geq 1-\delta$$

Method	Feature dimension (m)	Runtime	
Gegenbauer features (Our work)	$\frac{\left(2\log\frac{n}{\lambda}\right)^d + \left(1.93r\right)^{2d}}{(d-1)!}$	$m \cdot \operatorname{nnz}(\boldsymbol{X})$	
Fourier features (RR'07)	$\frac{n}{\lambda} \qquad d = o\left(\log \frac{1}{\lambda}\right)$	$m \cdot \operatorname{nnz}(\boldsymbol{X})$	
Modified Fourier features (AKMMVZ'17)	$(248r)^d \left(\log\frac{n}{\lambda}\right)^{\frac{d}{2}} + \left(200\log\frac{n}{\lambda}\right)^d$	$m \cdot \mathrm{nnz}(oldsymbol{X})$	
PolySketch (AKKPVWZ'20)	$r^{10}s_{\lambda}$	$r^{12}(s_{\lambda}n + \operatorname{nnz}(\boldsymbol{X}))$	
Adaptive Sketch (WZ'20)	s_{λ}	$r^{15}s_{\lambda}n + r^5 \mathrm{nnz}(\boldsymbol{X})$	

Method	Feature dimension (m)	Runtime	
Gegenbauer features (Our work)	$\frac{\left(2\log\frac{n}{\lambda}\right)^d + \left(1.93r\right)^{2d}}{(d-1)!}$	$m \cdot \mathrm{nnz}(oldsymbol{X})$	
Fourier features (RR'07)	$ m \cdot n$		
Modified Fourier features (AKMMVZ'17)	$(248r)^d \left(\log\frac{n}{\lambda}\right)^{\frac{d}{2}} + \left(200\log\frac{n}{\lambda}\right)^d$	$m \cdot \mathrm{nnz}(oldsymbol{X})$	
PolySketch (AKKPVWZ'20)	$r r = o\left(\sqrt{\log \frac{n}{\lambda}}\right)$	$r^{12}(s_{\lambda}n + \operatorname{nnz}(\boldsymbol{X}))$	
Adaptive Sketch (WZ'20)	s_{λ}	$r^{15}s_{\lambda}n + r^5 \mathrm{nnz}(\boldsymbol{X})$	

Method	Feature dimension (m)	Runtime		
Gegenbauer features (Our work)	$\frac{\left(2\log\frac{n}{\lambda}\right)^d + \left(1.93r\right)^{2d}}{(d-1)!}$	$m \cdot ext{nnz}(oldsymbol{X})$		
Fourier features (RR'07)	$\frac{n}{\lambda}$	$m \cdot \mathrm{nnz}(oldsymbol{X})$		
Modified Fourier features (AKMMVZ'17)	$(248r)^d \left(\log\frac{n}{\lambda}\right)^{\frac{d}{2}} + \left(200\log\frac{n}{\lambda}\right)^d$	$m \cdot \mathrm{nnz}(oldsymbol{X})$		
PolySketch (AKKPVWZ'20)	$r^{10}s_\lambda$	$r^{12}(s_{\lambda}n + \operatorname{nnz}(\boldsymbol{X}))$		
Adaptive Sketch (WZ'20)	s_{λ} $d = \mathcal{O}(1)$	$r^{15}s_{\lambda}n + r^5 \mathrm{nnz}(\boldsymbol{X})$		

Method	Feature dimension (m)	Runtime		
Gegenbauer features (Our work)	$\frac{\left(2\log\frac{n}{\lambda}\right)^d + \left(1.93r\right)^{2d}}{(d-1)!}$	$m \cdot ext{nnz}(oldsymbol{X})$		
Fourier features (RR'07)	$\frac{n}{\lambda}$	$m \cdot \mathrm{nnz}(oldsymbol{X})$		
Modified Fourier features (AKMMVZ'17)	$(248r)^d \left(\log\frac{n}{\lambda}\right)^{\frac{d}{2}} + \left(200\log\frac{n}{\lambda}\right)^d$	$m \cdot \mathrm{nnz}(oldsymbol{X})$		
PolySketch (AKKPVWZ'20)	$r^{10}s_{\lambda}$	$r^{12}(s_{\lambda}n + \operatorname{nnz}(\boldsymbol{X}))$		
Adaptive Sketch (WZ'20)	s_{λ} $d = \mathcal{O}(1)$	$r^{15}s_{\lambda}n + r^{5}$ nnz (\boldsymbol{X})		

Experiments

$_{\odot}$ Kernel ridge regression with Gaussian kernel

 Random Gegenbauer features achieve the best MSE except "Elevation" and "Protein" datasets

 \circ For "Protein" dataset (larger d), Nystrom method is the best

	Elevation		CO_2		Climate		Protein	
\overline{n}	64,800		$146,\!040$		$223,\!656$		45,730	
d	3		4		4		9	
	MSE	Time	MSE	Time	MSE	Time	MSE	Time
Nystrom	1.14	3.81	0.533	8.17	3.14	12.0	18.9	2.85
Fourier	1.30	2.10	0.548	4.73	3.15	6.93	19.8	1.66
FastFood	1.35	7.79	0.551	17.3	3.16	26.3	19.8	4.94
Maclaurin	1.90	1.07	0.593	2.38	3.18	3.55	25.9	1.05
PolySketch	1.56	7.65	0.590	16.4	3.15	23.5	26.9	4.96
Ours	1.15	1.71	0.532	3.49	3.13	5.41	21.0	9.72

MSE of kernel ridge regression and runtime for kernel approximation

Experiments

• Kernel k-means clustering with Gaussian kernel

 Random Gegenbauer features show the promising performance except "Mushroom" and "Connect-4" datasets which have a higher input dimension

\overline{n}	Abalone 4,177	Pendigits 7,494	$\begin{array}{c} \text{Mushroom} \\ 8,124 \end{array}$	$\begin{array}{c} \mathrm{Magic} \\ 19,020 \end{array}$	Statlog 43,500	Connect-4 67,557
d	8	16	21	10	9	42
Nyström	0.38	0.42	0.71	0.64	0.23	0.61
Fourier	0.38	0.43	0.72	0.66	0.24	0.81
FastFood	0.43	0.46	0.74	0.67	0.24	0.83
Maclaurin	0.43	0.46	0.72	0.73	0.23	0.90
PolySketch	0.35	0.45	0.67	0.66	0.21	0.82
Ours	0.35	0.40	0.71	0.59	0.21	0.78

The average sum of squared distance to the nearest cluster centers

Conclusion

• Summary:

- We study a new class of kernels expressed by Gegenbauer polynomials that covers a wide range of ubiquitous kernels
- We analyze that our random features can spectrally approximate kernel matrices, making it useful for scalable kernel methods
- One limitation is that it can tightly approximate when the inputs are in a low-dimensional space
- Future work:
 - Our limitation can be resolved by combining with additional dimensionality reductions (e.g., JL-transform)