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Federated Learning (FL)

o Clients with private data jointly solve a machine learning task

@ Raw data stored locally & not exchanged

FedAvg

Server

Global Model ‘ ’ Local Model

@ Private Data
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https://ai.googleblog.com/2017/04/federated-1learning-collaborative .html
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FL Challenge: Client Non-IID Data

@ Deviate from independent & identically distributed (IID)

10968
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FL Challenge: Client Non-IID Data

@ Deviate from independent & identically distributed (IID)
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o Example: feature skew

Alglelfikl~
o BlelEkim
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FL Challenge: Client Non-IID Data

@ Deviate from independent & identically distributed (IID)

LA

o Example: feature skew label skew

Alglelfikl~
o BlelEkim

@ Non-IID data can significantly lower model performance
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Client Update vs. Server Update

e Goal: find true optimum that generalizes well

model weight true optimum

O O
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Client Update vs. Server Update

e Goal: find true optimum that generalizes well

o Issue: Multi-step client update leads to a client optimum

model weight true optimum
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Client Update vs. Server Update

e Goal: find true optimum that generalizes well

o Issue: Multi-step client update leads to a client optimum

@ Research Question:

Is it possible to shift multi-step update to server?

)
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model weight true optimum

\A client optimum
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Client Update or Server Update

@ Is it possible to shift multi-step update to server?

@ Proposed NTK-FL enables multi-step server update °

proposed work

model weight V true optimum

. server update D
\ client optimum
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client update
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NTK: Neural Tangent Kernel

@ Approximate training dynamics with a differential equation (DE)
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Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural tangent kernel: Convergence and generalization in neural
networks.” NeurlPS 2018.
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NTK: Neural Tangent Kernel

@ Approximate training dynamics with a differential equation (DE)

@ The state evolution can be captured by DE solution

State at 0 State at 1 State at 2 State at ¢
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Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural tangent kernel: Convergence and generalization in neural
networks.” NeurlPS 2018.
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NTK-FL: Client Calculation

@ clients calculate Jacobian matrices

o without local update & avoid a local optimum

client1 cat Jacobian matrix
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NTK-FL: Client Calculation

@ clients calculate Jacobian matrices

o more expressive & preserve client information

more expressive less expressive
client 1 cat Jacobian matrix . . .
Jacobian matrix gradient
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NTK-FL: Client Calculation

@ clients calculate Jacobian matrices

@ server concatenates the Jacobian matrices

client1 cat Jacobian matrix

client 2 dog Jacobian matrix
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NTK-FL: Client Calculation

@ clients calculate Jacobian matrices

@ server concatenates the Jacobian matrices

client1 cat Jacobian matrix

Jacobian matrix

concatenate
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client 2 dog Jacobian matrix O
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NTK-FL: Server Calculation

@ Obtain different model weights via NTK evolution

Bl [~k
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NTK-FL: Server Calculation

@ Obtain different model weights via NTK evolution

o multi-step update is shifted to the server

=] [NTK

° Calculation

possible update steps at
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NTK-FL: Server Calculation

@ Select the weight w; that gives the lowest loss
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° Calculation
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NTK-FL: Server Calculation

@ Select the weight w; that gives the lowest loss

o dynamic update steps in different communication rounds
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Experiments: Non-IID Fashion-MNIST

@ Learning curves of different methods
o NTK-FL approaches centralized learning

[Centralized: selected clients share raw data]

0.88
44— Proposed
0.84 - =
,o--o—;_—":::'_': -0—-0’-:
) PRy ": P S
§ 0.80 - A= -u—
; —&— (entralized
£ 0.76 —#— NTK-FL
=& DataShare
—&-- FedNova
0.72 =B - FedAvg
0 10 20 30 40 50

Communication Round

Kai Yue et al. NC State Neural Tangent Kernel (NTK) Empowered FL 9 /12



Experiments: Non-IID Fashion-MNIST

@ Test accuracy with various degrees of heterogeneity

o NTK-FL is robust in different non-1ID scenarios
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Conclusion

@ NTK-FL transmits more expressive Jacobian matrix
o enable multi-step server update
o reduce the negative influence of data heterogeneity

o adaptively choose the number of update steps

@ Please refer to our paper for potential challenges
o additional communication cost

o privacy concerns
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