

Sharpened Quasi-Newton Methods: Faster Superlinear Rate and Larger Local Convergence Neighborhood

Qiujiang Jin¹, Alec Koppel², Ketan Rajawat³, Aryan Mokhtari¹

- 1. The University of Texas at Austin
 2. Amazon
- 3. Indian Institute of Technology Kanpur

Int. Conference on Machine Learning (ICML) 2022

Standard BFGS Method

► Convex optimization problem: $\min_{x \in \mathbb{R}^d} f(x)$.

Standard BFGS Method

- ► Convex optimization problem: $\min_{x \in \mathbb{R}^d} f(x)$.
- Quasi-Newton (QN) method: $x_{t+1} = x_t G_t^{-1} \nabla f(x_t)$.

Standard BFGS Method

- ► Convex optimization problem: $\min_{x \in \mathbb{R}^d} f(x)$.
- ▶ Quasi-Newton (QN) method: $x_{t+1} = x_t G_t^{-1} \nabla f(x_t)$.
- Standard (classical) BFGS update rule:

$$G_{t+1} = G_t - \frac{G_t s_t s_t^\top G_t}{s_t^\top G_t s_t} + \frac{y_t y_t^\top}{s_t^\top y_t},$$

with
$$s_t = x_{t+1} - x_t$$
 and $y_t = \nabla f(x_{t+1}) - \nabla f(x_t)$.

- ► Convex optimization problem: $\min_{x \in \mathbb{R}^d} f(x)$.
- ▶ Quasi-Newton (QN) method: $x_{t+1} = x_t G_t^{-1} \nabla f(x_t)$.
- Standard (classical) BFGS update rule:

$$G_{t+1} = G_t - \frac{G_t s_t s_t^\top G_t}{s_t^\top G_t s_t} + \frac{y_t y_t^\top}{s_t^\top y_t},$$

with
$$s_t = x_{t+1} - x_t$$
 and $y_t = \nabla f(x_{t+1}) - \nabla f(x_t)$.

▶ [A. Rodomanov and Y. Nesterov 2021 c.] Standard BFGS method has the local superlinear convergence rate of

$$\frac{\lambda_f(x_t)}{\lambda_f(x_0)} \leq \left(\frac{d \ln \kappa}{t}\right)^{\frac{t}{2}},$$

d is dimension, κ is condition number and $\lambda_f(x)$ is Newton decrement.

- ► Convex optimization problem: $\min_{x \in \mathbb{R}^d} f(x)$.
- ▶ Quasi-Newton (QN) method: $x_{t+1} = x_t G_t^{-1} \nabla f(x_t)$.
- Standard (classical) BFGS update rule:

$$G_{t+1} = G_t - \frac{G_t s_t s_t^\top G_t}{s_t^\top G_t s_t} + \frac{y_t y_t^\top}{s_t^\top y_t},$$

with
$$s_t = x_{t+1} - x_t$$
 and $y_t = \nabla f(x_{t+1}) - \nabla f(x_t)$.

► [A. Rodomanov and Y. Nesterov 2021 c.] Standard BFGS method has the local superlinear convergence rate of

$$\frac{\lambda_f(x_t)}{\lambda_f(x_0)} \leq \left(\frac{d \ln \kappa}{t}\right)^{\frac{t}{2}},$$

d is dimension, κ is condition number and $\lambda_f(x)$ is Newton decrement.

- Advantages:
 - ⇒ Approximating the Newton direction.
 - \Rightarrow Achieving superlinear convergence rate after only $d \ln \kappa$ iterations.

- ► Convex optimization problem: $\min_{x \in \mathbb{R}^d} f(x)$.
- ▶ Quasi-Newton (QN) method: $x_{t+1} = x_t G_t^{-1} \nabla f(x_t)$.
- Standard (classical) BFGS update rule:

$$G_{t+1} = G_t - \frac{G_t s_t s_t^\top G_t}{s_t^\top G_t s_t} + \frac{y_t y_t^\top}{s_t^\top y_t},$$

with
$$s_t = x_{t+1} - x_t$$
 and $y_t = \nabla f(x_{t+1}) - \nabla f(x_t)$.

► [A. Rodomanov and Y. Nesterov 2021 c.] Standard BFGS method has the local superlinear convergence rate of

$$\frac{\lambda_f(x_t)}{\lambda_f(x_0)} \leq \left(\frac{d \ln \kappa}{t}\right)^{\frac{t}{2}},$$

d is dimension, κ is condition number and $\lambda_f(x)$ is Newton decrement.

- Advantages:
 - ⇒ Approximating the Newton direction.
 - \Rightarrow Achieving superlinear convergence rate after only $d \ln \kappa$ iterations.
- Disadvantage: Failing to perfectly approximate the Hessian.

Greedy BFGS Method

► Greedy BFGS update rule:

$$G_{t+1} = G_t - \frac{G_t \bar{u}_t \bar{u}_t^\top G_t}{\bar{u}_t^\top G_t \bar{u}_t} + \frac{\nabla^2 f(x_t) \bar{u}_t \bar{u}_t^\top \nabla^2 f(x_t)}{\bar{u}_t^\top \nabla^2 f(x_t) \bar{u}_t}.$$

Greedy BFGS Method

Greedy BFGS update rule:

$$G_{t+1} = G_t - \frac{G_t \bar{u}_t \bar{u}_t^\top G_t}{\bar{u}_t^\top G_t \bar{u}_t} + \frac{\nabla^2 f(x_t) \bar{u}_t \bar{u}_t^\top \nabla^2 f(x_t)}{\bar{u}_t^\top \nabla^2 f(x_t) \bar{u}_t}.$$

 $ightharpoonup \bar{u}_t$ is the greedily selected direction:

$$\bar{u}_t = \underset{u \in \{e_i\}_{i=1}^d}{\operatorname{argmax}} \frac{u^\top G_t u}{u^\top \nabla^2 f(x_t) u},$$

where $\{e_i\}_{i=1}^d$ are the unit vectors.

Greedy BFGS update rule:

$$G_{t+1} = G_t - \frac{G_t \bar{u}_t \bar{u}_t^\top G_t}{\bar{u}_t^\top G_t \bar{u}_t} + \frac{\nabla^2 f(x_t) \bar{u}_t \bar{u}_t^\top \nabla^2 f(x_t)}{\bar{u}_t^\top \nabla^2 f(x_t) \bar{u}_t}.$$

 $ightharpoonup \bar{u}_t$ is the greedily selected direction:

$$ar{u}_t = \mathop{\mathsf{argmax}}_{u \in \{e_i\}_{i=1}^d} \frac{u^\top G_t u}{u^\top \nabla^2 f(x_t) u},$$

where $\{e_i\}_{i=1}^d$ are the unit vectors.

▶ [A. Rodomanov and Y. Nesterov 2021 a.] Greedy BFGS method has the local superlinear convergence rate of

$$\frac{\lambda_f(x_t)}{\lambda_f(x_0)} \leq \left(d\kappa (1 - \frac{1}{d\kappa})^{\frac{t}{2}}\right)^t.$$

► Greedy BFGS update rule:

$$G_{t+1} = G_t - \frac{G_t \bar{u}_t \bar{u}_t^\top G_t}{\bar{u}_t^\top G_t \bar{u}_t} + \frac{\nabla^2 f(x_t) \bar{u}_t \bar{u}_t^\top \nabla^2 f(x_t)}{\bar{u}_t^\top \nabla^2 f(x_t) \bar{u}_t}.$$

 $ightharpoonup ar{u}_t$ is the greedily selected direction:

$$ar{u}_t = \mathop{\mathsf{argmax}}_{u \in \{e_i\}_{i=1}^d} \frac{u^\top G_t u}{u^\top \nabla^2 f(x_t) u},$$

where $\{e_i\}_{i=1}^d$ are the unit vectors.

▶ [A. Rodomanov and Y. Nesterov 2021 a.] Greedy BFGS method has the local superlinear convergence rate of

$$\frac{\lambda_f(x_t)}{\lambda_f(x_0)} \leq \left(d\kappa(1-\frac{1}{d\kappa})^{\frac{t}{2}}\right)^t.$$

- Advantages:
 - ⇒ Directly approximating the Hessian matrix.
 - ⇒ Eventually reaching fast quadratic convergence rate.

Greedy BFGS update rule:

$$G_{t+1} = G_t - \frac{G_t \bar{u}_t \bar{u}_t^\top G_t}{\bar{u}_t^\top G_t \bar{u}_t} + \frac{\nabla^2 f(x_t) \bar{u}_t \bar{u}_t^\top \nabla^2 f(x_t)}{\bar{u}_t^\top \nabla^2 f(x_t) \bar{u}_t}.$$

 $ightharpoonup \bar{u}_t$ is the greedily selected direction:

$$ar{u}_t = \mathop{\mathsf{argmax}}_{u \in \{e_i\}_{i=1}^d} \frac{u^\top G_t u}{u^\top \nabla^2 f(x_t) u},$$

where $\{e_i\}_{i=1}^d$ are the unit vectors.

▶ [A. Rodomanov and Y. Nesterov 2021 a.] Greedy BFGS method has the local superlinear convergence rate of

$$\frac{\lambda_f(x_t)}{\lambda_f(x_0)} \leq \left(d\kappa (1 - \frac{1}{d\kappa})^{\frac{t}{2}}\right)^t.$$

- Advantages:
 - ⇒ Directly approximating the Hessian matrix.
 - ⇒ Eventually reaching fast quadratic convergence rate.
- Disadvantage:
 - \Rightarrow Requiring $d\kappa \ln(d\kappa)$ iterations to achieve the superlinear convergence.

Sharpened BFGS Method

We proposed the sharpened BFGS method.

Sharpened BFGS Method

- We proposed the sharpened BFGS method.
- Leveraging both standard BFGS and greedy BFGS updates to
 - properly approximate the Newton direction as in BFGS.
 - accurately approximate the Hessian matrix as in Greedy BFGS.

$$\begin{split} \bar{G}_t &= G_t - \frac{G_t s_t s_t^\top G_t}{s_t^\top G_t s_t} + \frac{y_t y_t^\top}{s_t^\top y_t}, \\ G_{t+1} &= \bar{G}_t - \frac{\bar{G}_t \bar{u}_t \bar{u}_t^\top \bar{G}_t}{\bar{u}_t^\top \bar{G}_t \bar{u}_t} + \frac{\nabla^2 f(x_t) \bar{u}_t \bar{u}_t^\top \nabla^2 f(x_t)}{\bar{u}_t^\top \nabla^2 f(x_t) \bar{u}_t}. \end{split}$$

- ► We proposed the sharpened BFGS method.
- Leveraging both standard BFGS and greedy BFGS updates to
 - properly approximate the Newton direction as in BFGS.
 - accurately approximate the Hessian matrix as in Greedy BFGS.

$$ar{G}_t = G_t - rac{G_t s_t s_t^ op G_t}{s_t^ op G_t s_t} + rac{y_t y_t^ op}{s_t^ op y_t},$$
 $ar{G}_t ar{u}_t ar{u}_t^ op ar{G}_t \quad
abla^2 f(x_t) ar{u}_t ar{u}_t^ op
abla^2 f(x_t)$

$$G_{t+1} = \bar{G}_t - \frac{\bar{G}_t \bar{u}_t \bar{u}_t^\top \bar{G}_t}{\bar{u}_t^\top \bar{G}_t \bar{u}_t} + \frac{\nabla^2 f(x_t) \bar{u}_t \bar{u}_t^\top \nabla^2 f(x_t)}{\bar{u}_t^\top \nabla^2 f(x_t) \bar{u}_t}.$$

▶ [Jin, Koppel, Rajawat and Mokhtari 2022] Sharpened BFGS method has the local superlinear convergence rate of

$$\frac{\lambda_f(x_t)}{\lambda_f(x_0)} \leq \left(1 - \frac{1}{d\kappa}\right)^{\frac{t(t-1)}{4}} \left(\frac{d\kappa}{t}\right)^{\frac{t}{2}}.$$

▶ [Jin, Koppel, Rajawat and Mokhtari 2022] Sharpened BFGS method has the local superlinear convergence rate of

$$\frac{\lambda_f(x_t)}{\lambda_f(x_0)} \leq \left(1 - \frac{1}{d\kappa}\right)^{\frac{t(t-1)}{4}} \left(\frac{d\kappa}{t}\right)^{\frac{t}{2}}.$$

Comparison of standard BFGS, greedy BFGS and sharpened BFGS:

Algorithm	Superlinear Rate	t_0
Standard BFGS	$\left(\frac{d \ln \kappa}{t}\right)^{\frac{t}{2}}$	$d \ln \kappa$
Greedy BFGS	$\left(d\kappa(1\!-\!rac{1}{d\kappa})^{rac{t}{2}} ight)^t$	$d\kappa \ln (d\kappa)$
Sharpened BFGS	$(1-\frac{1}{d\kappa})^{\frac{t(t-1)}{4}}(\frac{d\kappa}{t})^{\frac{t}{2}}$	$d\kappa$

- Convergence rate of Sharpened BFGS is substantially faster than the other two methods.
- Sharpened BFGS requires less iterations compared to Greedy BFGS to enter the superlinear convergence phase.

Sharpened BFGS obtains the best performance in all considered settings.

(a) phishing dataset: d = 68.

(b) a9a dataset: d = 123.

(c) protein dataset: d=357. (d) colon dataset: d=2000.

Thanks for your attention!

- Q. Jin and A. Mokhtari. "Non-asymptotic Superlinear Convergence of Standard Quasi-Newton Methods," arXiv preprint arXiv:2003.13607, 2020.
- A. Rodomanov and Y. Nesterov. "Greedy quasi-newton methods with explicit superlinear convergence," SIAM Journal on Optimization, 31(1):785–811, 2021 a.
- A. Rodomanov and Y. Nesterov. "Rates of superlinear con- vergence for classical quasi-newton methods," *Mathematical Programming, pp. 1–32*, 2021 b.
- A. Rodomanov and Y. Nesterov. "New results on superlinear convergence of classical quasi-newton methods," Journal of Optimization Theory and Applications, 188(3):744-769, 2021 c.
- Q.Jin, A.Koppel, K.Rajawat and A.Mokhtari . "Sharpened Quasi-Newton Methods: Faster Superlinear Rate and Larger Local Convergence Neighborhood," The 39th International Conference on Machine Learning, 2022.