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Standard BFGS Method

▶ Convex optimization problem: minx∈Rd f (x).

▶ Quasi-Newton (QN) method: xt+1 = xt − G−1
t ∇f (xt).

▶ Standard (classical) BFGS update rule:

Gt+1 = Gt −
Gtsts

⊤
t Gt

s⊤t Gtst
+

yty
⊤
t

s⊤t yt
,

with st = xt+1 − xt and yt = ∇f (xt+1)−∇f (xt).

▶ [A. Rodomanov and Y. Nesterov 2021 c.] Standard BFGS method has
the local superlinear convergence rate of

λf (xt)

λf (x0)
≤

(
d lnκ

t

) t
2

,

d is dimension, κ is condition number and λf (x) is Newton decrement.

▶ Advantages:

⇒ Approximating the Newton direction.

⇒ Achieving superlinear convergence rate after only d lnκ iterations.

▶ Disadvantage: Failing to perfectly approximate the Hessian.
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Greedy BFGS Method

▶ Greedy BFGS update rule:

Gt+1 = Gt −
Gt ūt ūt

⊤Gt

ūt⊤Gt ūt
+

∇2f (xt)ūt ūt
⊤∇2f (xt)

ūt⊤∇2f (xt)ūt
.

▶ ūt is the greedily selected direction:

ūt = argmax
u∈{ei}di=1

u⊤Gtu

u⊤∇2f (xt)u
,

where {ei}di=1 are the unit vectors.

▶ [A. Rodomanov and Y. Nesterov 2021 a.] Greedy BFGS method has
the local superlinear convergence rate of

λf (xt)

λf (x0)
≤

(
dκ(1− 1

dκ
)
t
2

)t

.

▶ Advantages:

⇒ Directly approximating the Hessian matrix.

⇒ Eventually reaching fast quadratic convergence rate.

▶ Disadvantage:

⇒ Requiring dκ ln (dκ) iterations to achieve the superlinear convergence.
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⊤Gt
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Sharpened BFGS Method

▶ We proposed the sharpened BFGS method.

▶ Leveraging both standard BFGS and greedy BFGS updates to
▶ properly approximate the Newton direction as in BFGS.
▶ accurately approximate the Hessian matrix as in Greedy BFGS.

Ḡt = Gt −
Gtsts

⊤
t Gt

s⊤t Gtst
+

yty
⊤
t

s⊤t yt
,

Gt+1 = Ḡt −
Ḡt ūt ūt

⊤Ḡt

ūt⊤Ḡt ūt
+

∇2f (xt)ūt ūt
⊤∇2f (xt)

ūt⊤∇2f (xt)ūt
.
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ūt⊤Ḡt ūt
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Theoretical Results

▶ [Jin, Koppel, Rajawat and Mokhtari 2022] Sharpened BFGS method
has the local superlinear convergence rate of

λf (xt)

λf (x0)
≤

(
1− 1

dκ

) t(t−1)
4

(
dκ

t

) t
2

.

▶ Comparison of standard BFGS, greedy BFGS and sharpened BFGS:

Algorithm Superlinear Rate t0

Standard BFGS ( d lnκ
t

)
t
2 d lnκ

Greedy BFGS
(
dκ(1− 1

dκ
)
t
2

)t

dκ ln (dκ)

Sharpened BFGS (1− 1
dκ

)
t(t−1)

4 ( dκ
t
)
t
2 dκ

▶ Convergence rate of Sharpened BFGS is substantially faster than the other
two methods.

▶ Sharpened BFGS requires less iterations compared to Greedy BFGS to
enter the superlinear convergence phase.
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Numerical Experiments

▶ Sharpened BFGS obtains the best performance in all considered settings.
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