Meaningfully Debugging Model Mistakes using
Conceptual Counterfactual Explanations
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Problem N

Analyzing model mistakes is often an ad hoc process.

underrepresented in training distribution?
wrong preprocessing?

spurious correlation that is hindering
generalization?
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CCE
( This work)
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I will train my model with zebra images from my diverse
environments

P(African crocodile) = 78% I will carefully process the background



Generating Conceptual

a) Learning a Concept Bank b) Counterfactuals

C) Explaining Model Mistake
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This work: Combine concept-based and counterfactual explanations!
Get human concepts -> Generate counterfactual statements



Learning Concepts

a) Learning a Concept Bank
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Concept Activation Vectors (Kim et al. 2017)
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Depending on the application, the user defines a set of
i ol concepts and concept-annotated samples.
{ e.g. BRODEN dataset of visual concepts
‘ (Fong & Vedaldi, 2018) contains concepts such as objects,
textures, image qualities.
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Counterfactual Explanations

“If X had not occurred, Y would (not) have occurred”

e.g. If Bob had a Master’s degree, he would not have been denied for loan.

Drawing inspiration from Verma et al. 2020, our desiderata for counterfactuals:
1- Correctness: A counterfactual is correct if it can correctly change the prediction.
2- Validity: Counterfactuals should not violate real-world conditions.

Debugging/communicating a large number of modifications may not be
trivial, hence counterfactuals should modify a minimal number of concepts.




Conceptual Counterfactual Explanations (CCE)

b) Generating Conceptual
Counterfactuals
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Conceptual Counterfactual Explanations (CCE)

b) Generating Conceptual

Counterfactuals Correctness Validity
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Cannot remove a concept that does not exist
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CCE Reveals Spurious Correlations

a ¢ Do top 3 conceptual explanation scores
: ¢ B recover the spurious correlation?
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We use Metashift (Liang & Zou, 2022) to generate datasets with ground truth spurious correlations.



CCE in the wild: Explaining the mistakes made by a skin

lesion classifier

a) Label: Allergic Contact
Dermatitis

Pred: Stasis Edema (19%)

- Blackness -0.42

- Dark Skin -0.67

b) Label: Fixed Eruptions
Pred: Erythema
Nodosum(35%)

- Ashcan

- Defocus
Blur

C) Label: Mucinosis
Pred: Aplasia Cutis (9%)

d) Label: Sarcoidosis
Pred: Nevus Sebaceous

of Jadassohn (36%)

- Motion Blur -0.51

- Skin Hair -0.52

CCE can identify biases in the model, or mistakes due to low-quality data points.



Thank you!



