

Thirty-ninth International Conference on Machine Learning

An Analytical Update Rule For General Policy Optimization

*Hepeng Li, *Nicholas Clavette, *Haibo He

^{*}Department of Electrical, Computer and Biomedical Engineering

University of Rhode Island

Results

Connections

Conclusion

RL Framework:

Introduction
0000

Results

Connections 00000 Conclusion

Value-Based Method

• PI: greedy policy: $a^* = \arg \max_{a} Q^{k-1}(s, a) \Rightarrow \pi^k$

• **PE**:
$$\mathcal{T}Q(s, a) \triangleq r(s, a) + \gamma \mathbb{E}_{s' \sim P, a' \sim \pi^k}[Q(s', a')] \Rightarrow Q^k$$

Policy Search Method

- Policy is parameterized by $\pi(a|s;\theta)$
- Policy update: $\theta^{k+1} \leftarrow \theta^k + \Delta \theta$ (policy gradient, random search, ...)

Advantages:

- 1 can learn stochastic policies
- 2 better convergence
- 3 effective for continuous actions

$$\left(Q^0 \xrightarrow{\mathbf{PI}} \pi^1 \xrightarrow{\mathbf{PE}} Q^1 \xrightarrow{\mathbf{PI}} \cdots \xrightarrow{\mathbf{PE}} Q^*\right)$$

Introduction

Results

Connections

Conclusion

What are the limitations?

Introduction

Results

Connections

Conclusion

What are the limitations?

only apply to parameterized policies

Introduction
00000

Conclusion

What are the limitations?

- only apply to parameterized policies
- difficult to integrate prior policy knowledge

Introduction
00000

Conclusion

What are the limitations?

- only apply to parameterized policies
- difficult to integrate prior policy knowledge
- sample inefficiency and high variance

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) Q_{\pi_{\theta}}(s,a)]$$

Introduction
00000

Conclusion

What are the limitations?

- only apply to parameterized policies
- difficult to integrate prior policy knowledge
- sample inefficiency and high variance

 $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) Q_{\pi_{\theta}}(s,a)]$

no improvement guarantee due to inappropriate choice of stepsize

Introduction
00000

Conclusion

What are the limitations?

- only apply to parameterized policies
- difficult to integrate prior policy knowledge
- sample inefficiency and high variance

 $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) Q_{\pi_{\theta}}(s,a)]$

• no improvement guarantee due to inappropriate choice of stepsize

What if we directly search policy in a function space?

• optimize a functional

 $\max_{\pi} J(\pi), \ s.t. \ \pi \in \Pi$

Introduction
00000

Conclusion

What are the limitations?

- only apply to parameterized policies
- difficult to integrate prior policy knowledge
- sample inefficiency and high variance

 $\nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim \pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) Q_{\pi_{\theta}}(s,a)]$

• no improvement guarantee due to inappropriate choice of stepsize

What if we directly search policy in a function space?

• optimize a functional

 $\max_{\pi} J(\pi), \ s.t. \ \pi \in \Pi$

• A closed-form solution solving all these limitations?

Introduction	
00000	

Results

Connections

 $a \in \mathcal{A} \subseteq \mathbb{R}^n$ or $\mathcal{A} = \{a^1, \dots, a^n\}$

 $\mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0, \infty)$ (unknown)

 $\mathcal{S} \times \mathcal{A} \rightarrow [r_{\min}, r_{\max}]$ (unknown)

Conclusion

Modeling

Infinite horizon MDP $\mathcal{M} = \{\mathcal{S}, \mathcal{A}, P, r, \gamma, \rho_0\}$:

- S state space $s \in S \subseteq \mathbb{R}^m$ (continuous)
- \mathcal{A} action space
- P transition kernel
- r reward function
- γ discount factor
- ρ_0 distribution of s_0 $\mathcal{S} \to [0,\infty)$
- objective: find an optimal policy π^* so that

$$\pi^* = \underset{\pi}{\arg \max} I(\pi) \quad \text{where} \quad J(\pi) = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right]$$

$$\tau = (s_0, a_0, s_1, \dots), \ s_0 \sim \rho_0(\cdot), \ s_{t+1} \sim P(\cdot | s_t, a_t), \ a_t \sim \pi(\cdot | s_t)$$

 $\gamma \rightarrow [0,1)$

Introduction ○○○○●	Results	Connections	Conclusion

Modeling

Infinite horizon MDP $\mathcal{M} = \{\mathcal{S}, \mathcal{A}, P, r, \gamma, \rho_0\}$

Definitions and Notations:

•
$$V_{\pi}(s) = \mathbb{E}_{a_t, s_{t+1}, \dots} \left[\sum_{l=t}^{\infty} \gamma^{l-t} r(s_l, a_l) | s_t = s, \pi \right]$$

•
$$Q_{\pi}(s,a) = \mathbb{E}_{s_{t+1},a_{t+1},\dots} \left[\sum_{l=t}^{\infty} \gamma^{l-t} r(s_l,a_l) | s_t = s, a_t = s, \pi \right]$$

- $A_{\pi}(s,a) = Q_{\pi}(s,a) V_{\pi}(s)$
- d^{π} : discounted state visitation density

$$d^{\pi}(s) = (1 - \gamma)[\rho_0^{\pi}(s) + \gamma \rho_1^{\pi}(s) + \gamma^2 \rho_2^{\pi}(s)] = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t \rho_t^{\pi}(s)$$

where $\rho_t^{\pi}(\cdot)$ is the distribution of the state at step *t*.

Introduction	Results	Connections	Conclusion
00000	●0000	00000	000

Result 1: A Closed-From Policy Update Rule

Theorem (Monotonic Improvement Guarantee)

For any stochastic policies π_{new} , π_{old} that are continuously differentiable on the state space S, the inequality

$$J(\pi_{\text{new}}) \ge J(\pi_{\text{old}})$$
 holds when $\pi_{\text{new}} = \pi_{\text{old}} \cdot \frac{e^{\alpha_{\pi_{\text{old}}}}}{\mathbb{E}_{a \sim \pi_{\text{old}}}[e^{\alpha_{\pi_{\text{old}}}}]}$

~

where $\alpha_{\pi_{old}} = A_{\pi_{old}}/C_{\pi_{old}}$ and $C_{\pi_{old}}$ is a constant

$$C_{\pi_{\mathrm{old}}} = rac{\gamma^2 \epsilon}{(1-\gamma)^3}, \; \epsilon = \max_{s,a} |A_{\pi_{\mathrm{old}}}(s,a)|, \gamma \in [0.5,1).$$

Introduction	Results	Connections	Conclusion
00000	●0000	00000	000

Result 1: A Closed-From Policy Update Rule

Theorem (Monotonic Improvement Guarantee)

For any stochastic policies π_{new} , π_{old} that are continuously differentiable on the state space S, the inequality

$$J(\pi_{\text{new}}) \ge J(\pi_{\text{old}})$$
 holds when $\pi_{\text{new}} = \pi_{\text{old}} \cdot \frac{e^{\alpha_{\pi_{\text{old}}}}}{\mathbb{E}_{a \sim \pi_{\text{old}}}[e^{\alpha_{\pi_{\text{old}}}}]}$

~

where $\alpha_{\pi_{old}} = A_{\pi_{old}}/C_{\pi_{old}}$ and $C_{\pi_{old}}$ is a constant

$$C_{\pi_{\mathrm{old}}} = rac{\gamma^2 \epsilon}{(1-\gamma)^3}, \; \epsilon = \max_{s,a} |A_{\pi_{\mathrm{old}}}(s,a)|, \gamma \in [0.5,1).$$

• The policy update rule is off-policy

Introduction	Results	Connections	Conclusion
00000	●0000	00000	000

Result 1: A Closed-From Policy Update Rule

Theorem (Monotonic Improvement Guarantee)

For any stochastic policies π_{new} , π_{old} that are continuously differentiable on the state space S, the inequality

$$J(\pi_{\text{new}}) \ge J(\pi_{\text{old}})$$
 holds when $\pi_{\text{new}} = \pi_{\text{old}} \cdot \frac{e^{\alpha_{\pi_{\text{old}}}}}{\mathbb{E}_{a \sim \pi_{\text{old}}}[e^{\alpha_{\pi_{\text{old}}}}]}$

where $\alpha_{\pi_{\text{old}}} = A_{\pi_{\text{old}}}/C_{\pi_{\text{old}}}$ and $C_{\pi_{\text{old}}}$ is a constant

$$C_{\pi_{\mathrm{old}}} = rac{\gamma^2 \epsilon}{(1-\gamma)^3}, \; \epsilon = \max_{s,a} |A_{\pi_{\mathrm{old}}}(s,a)|, \gamma \in [0.5,1).$$

- The policy update rule is **off-policy**
- Derived from TRPO¹ based on a new bound on policy performance

¹J. Schulman et al. (2015). "Trust Region Policy Optimization". In: Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37. ICML'15. Lille, France: JMLR.org, pp. 1889–1897

Introduction	Results	Connections	Conclusion
00000	00000	00000	000

1 Approximate $J(\pi)$ around π_k by a surrogate model

$$L_{\pi_k}(\pi) = J(\pi_k) + \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^{\pi_k}, a \sim \pi} [A_{\pi_k}(s, a)]$$

2 Restrict policy search to the neighborhood of π_k

Introduction	Results	Connections	Conclusion
00000	00000	00000	000

1 Approximate $J(\pi)$ around π_k by a surrogate model

$$L_{\pi_k}(\pi) = J(\pi_k) + \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^{\pi_k}, a \sim \pi} [A_{\pi_k}(s, a)]$$

2 Restrict policy search to the neighborhood of π_k

Bound of the approximation error:

$$ig| J(\pi') - L_{\pi_k}(\pi') ig| \le C \max_s D_{\mathrm{KL}}[\pi' \| \pi_k](s),$$

where $C = rac{4\gamma\epsilon}{(1-\gamma)^2}, \ \epsilon = \max_{s,a} |A_{\pi_k}(s,a)|$

Introduction	Results	Connections	Conclusion
00000	00000	00000	000

1 Approximate $J(\pi)$ around π_k by a surrogate model

$$L_{\pi_k}(\pi) = J(\pi_k) + \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^{\pi_k}, a \sim \pi} [A_{\pi_k}(s, a)]$$

2 Restrict policy search to the neighborhood of π_k

Bound of the approximation error:

$$ig| J(\pi') - L_{\pi_k}(\pi') ig| \le C \max_s D_{\mathrm{KL}}[\pi' \| \pi_k](s),$$

where $C = rac{4\gamma\epsilon}{(1-\gamma)^2}, \ \epsilon = \max_{s,a} |A_{\pi_k}(s,a)|$

Lower bound of policy performance:

$$J(\pi') \geq L_{\pi_k}(\pi') - C \max_s D_{\mathrm{KL}}[\pi' \| \pi_k](s)$$

Maximizing the lower bound guarantees an improved policy

Introduction	Results	Connections	Conclusion
00000	00000	00000	000

1 Approximate $J(\pi)$ around π_k by a surrogate model

$$L_{\pi_k}(\pi) = J(\pi_k) + \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^{\pi_k}, a \sim \pi} [A_{\pi_k}(s, a)]$$

2 Restrict policy search to the neighborhood of π_k

Bound of the approximation error:

$$ig| J(\pi') - L_{\pi_k}(\pi') ig| \le C \max_s D_{\mathrm{KL}}[\pi' \| \pi_k](s),$$

where $C = rac{4\gamma\epsilon}{(1-\gamma)^2}, \ \epsilon = \max_{s,a} |A_{\pi_k}(s,a)|$

Lower bound of policy performance:

$$J(\pi') \ge L_{\pi_k}(\pi') - C \max_{s} D_{\mathrm{KL}}[\pi' \| \pi_k](s)$$

Maximizing the lower bound guarantees an improved policy

Introduction	Results	Connections	Conclusion
00000	0000	00000	000

1 Approximate $J(\pi)$ around π_k by a surrogate model

$$L_{\pi_k}(\pi) = J(\pi_k) + \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^{\pi_k}, a \sim \pi} [A_{\pi_k}(s, a)]$$

2 Restrict policy search to the neighborhood of π_k

Bound of the approximation error:

$$ig| J(\pi') - L_{\pi_k}(\pi') ig| \le C \max_s D_{\mathrm{KL}}[\pi' \| \pi_k](s),$$

where $C = rac{4\gamma\epsilon}{(1-\gamma)^2}, \ \epsilon = \max_{s,a} |A_{\pi_k}(s,a)|$

Lower bound of policy performance:

$$J(\pi') \geq L_{\pi_k}(\pi') - C \max_s D_{\mathrm{KL}}[\pi' \| \pi_k](s)$$

$$\begin{array}{ll} \max_{\pi'} \ L_{\pi_k}(\pi') \\ \approx \ s.t. \ \mathbb{E}_{s \sim d^{\pi_k}}[D_{\mathrm{KL}}[\pi'||\pi_k](s)] \leq \delta \end{array}$$

Introduction	Results	Connections	Conclusion
00000	00000	00000	000

Result 2: A Tighter Lower Bound on Policy Performance

Theorem (Upper Bound on Surrogate Approximation Error)

For any stochastic policies π', π and discount factor $\gamma \in [0.5, 1)$, the following bound holds:

$$\begin{split} \left| J(\pi') - L_{\pi}(\pi') \right| &\leq \frac{1}{1 - \gamma} C_{\pi} \mathbb{E}_{s \sim d^{\pi}} \left[D_{\mathrm{KL}}[\pi' \| \pi](s) \right], \\ \text{where } C_{\pi} &= \frac{\gamma^2 \epsilon}{(1 - \gamma)^3}, \ \epsilon = \max_{s, a} |A_{\pi}(s, a)|. \end{split}$$

A new lower bound on performance:

$$J(\pi') \ge L_{\pi}(\pi') - \frac{1}{1 - \gamma} C_{\pi} \mathbb{E}_{s \sim d^{\pi}} \left[D_{\text{KL}}[\pi' \| \pi](s) \right]$$

This result relates the bound to the expected KL, which is tighter than the max KL.

Introduction	Results	Connections	Conclusion
00000	00000	00000	000

Derive the Update Rule using Calculus of Variation

The lower bound around π_k :

$$\underline{J(\pi')} = J(\pi_k) + \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^{\pi}, a \sim \pi'} \left[A_{\pi_k}(s, a) - C_{\pi_k} \log \frac{\pi'(a|s)}{\pi_k(a|s)} \right]$$

Introduction	Results	Connections	Conclusio
00000	00000	00000	000

Derive the Update Rule using Calculus of Variation

The lower bound around π_k :

$$\underline{J(\pi')} = J(\pi_k) + \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^{\pi}, a \sim \pi'} \left[A_{\pi_k}(s, a) - C_{\pi_k} \log \frac{\pi'(a|s)}{\pi_k(a|s)} \right]$$

Maximizing $J(\pi')$ is equivalent to:

$$\max_{\pi'} \iint d^{\pi_k}(s)\pi'(a|s) \Big[A_{\pi_k}(s,a) - C_{\pi_k} \log \frac{\pi'(a|s)}{\pi_k(a|s)} \Big] ds da$$

s.t.
$$\int \pi'(a|s) da = 1$$

Introduction	Results	Connections	Conclusio
00000	00000	00000	000

Derive the Update Rule using Calculus of Variation

The lower bound around π_k :

$$\underline{J(\pi')} = J(\pi_k) + \frac{1}{1-\gamma} \mathbb{E}_{s \sim d^{\pi}, a \sim \pi'} \left[A_{\pi_k}(s, a) - C_{\pi_k} \log \frac{\pi'(a|s)}{\pi_k(a|s)} \right]$$

Maximizing $J(\pi')$ is equivalent to:

$$\begin{split} \max_{\pi'} & \iint d^{\pi_k}(s) \pi'(a|s) \Big[A_{\pi_k}(s,a) - C_{\pi_k} \log \frac{\pi'(a|s)}{\pi_k(a|s)} \Big] ds da \\ s.t. & \int \pi'(a|s) da = 1 \end{split}$$

Euler-Lagrange equation: $A_{\pi_k} - C_{\pi_k} \log \pi' - C_{\pi_k} + C_{\pi_k} \log \pi_k - \lambda = 0$

Incoduction nesults Connections	Conclusion
00000 0000 00000	000

Result 3: The Update Rule for Multi-Agent RL

Corollary

For any stochastic policies π_{new}^i , π_{old}^i of agent *i* that are continuously differentiable on the local observation space \mathcal{O}^i , the inequality,

 $J(\pi_{\text{new}}) \ge J(\pi_{\text{old}})$ holds when

$$\pi_{\text{new}}^{i} = \pi_{\text{old}}^{i} \cdot \frac{e^{\alpha_{\pi_{\text{old}}}}}{\mathbb{E}_{a \sim \pi_{\text{old}}} \left[e^{\alpha_{\pi_{\text{old}}}} \right]} \text{ and } \pi_{\text{new}}^{-i} = \pi_{\text{old}}^{-i},$$

where π_{new}^{-i} , π_{old}^{-i} are the joint policies of all agents except *i*.

	Introduction	Results	Connections	Conclusion
00000 0000 0000 000	00000	00000	00000	000

Result 3: The Update Rule for Multi-Agent RL

Corollary

For any stochastic policies π_{new}^i , π_{old}^i of agent *i* that are continuously differentiable on the local observation space \mathcal{O}^i , the inequality,

 $J(\pi_{\text{new}}) \ge J(\pi_{\text{old}})$ holds when

$$\pi_{\text{new}}^{i} = \pi_{\text{old}}^{i} \cdot \frac{e^{\alpha_{\pi_{\text{old}}}}}{\mathbb{E}_{a \sim \pi_{\text{old}}} [e^{\alpha_{\pi_{\text{old}}}}]} \text{ and } \underline{\pi_{\text{new}}^{-i} = \pi_{\text{old}}^{-i}}, \text{ Environment becomes stationary for agent } i$$

where π_{new}^{-i} , π_{old}^{-i} are the joint policies of all agents except *i*.

Introduction	Results	Connections	Conclusion
00000	00000	●0000	

Connections to Prior Work

- Proximal Policy Optimization
- Value-based Methods
- Relative Entropy Policy Search
- Soft Actor-Critic

Introduction	Results	Connections	Conclusion
00000	00000	00000	000

Recall our policy update rule:

An explanation of the policy update rule

²J. Schulman et al. (2017). *Proximal Policy Optimization Algorithms*. DOI: 10.48550/ARXIV.1707.06347

Introduction	Results	Connections	Conclusion
00000	00000	00000	000

Recall our policy update rule:

$$\pi_{\text{new}} = \pi_{\text{old}} \cdot \frac{e^{\alpha_{\pi_{\text{old}}}}}{\mathbb{E}_{a \sim \pi_{\text{old}}} [e^{\alpha_{\pi_{\text{old}}}}]} \quad \text{where}$$
$$\alpha_{\pi_{\text{old}}} = \frac{A_{\pi_{\text{old}}}(s, a)}{\max_{s, a} |A_{\pi_{\text{old}}}(s, a)|} \cdot \frac{(1 - \gamma)^3}{\gamma^2}$$

Assume $\alpha_{\pi_{\rm old}} \in [\alpha_{\min}, \alpha_{\max}],$ then we have

$$\frac{\pi_{\text{new}}}{\pi_{\text{old}}} \in \left[\frac{e^{\alpha_{\min}}}{Z}, \frac{e^{\alpha_{\max}}}{Z}\right] = [1 - \epsilon_1, 1 + \epsilon_2]$$

where $Z = \mathbb{E}_{a \sim \pi_{\text{old}}} \left[e^{\alpha_{\pi_{\text{old}}}} \right]$ and $\epsilon_1, \epsilon_2 \ge 0, \epsilon_1 < 1$.

An explanation of the policy update rule

²J. Schulman et al. (2017). *Proximal Policy Optimization Algorithms*. DOI: 10.48550/ARXIV.1707.06347

Introduction	Results	Connections	Conclusion
00000	00000	00000	000

Recall our policy update rule:

$$\pi_{\text{new}} = \pi_{\text{old}} \cdot \frac{e^{\alpha_{\pi_{\text{old}}}}}{\mathbb{E}_{a \sim \pi_{\text{old}}} [e^{\alpha_{\pi_{\text{old}}}}]} \quad \text{where}$$
$$\alpha_{\pi_{\text{old}}} = \frac{A_{\pi_{\text{old}}}(s, a)}{\max_{s, a} |A_{\pi_{\text{old}}}(s, a)|} \cdot \frac{(1 - \gamma)^3}{\gamma^2}$$

Assume $\alpha_{\pi_{\rm old}} \in [\alpha_{\min}, \alpha_{\max}],$ then we have

$$\frac{\pi_{\text{new}}}{\pi_{\text{old}}} \in \left[\frac{e^{\alpha_{\min}}}{Z}, \frac{e^{\alpha_{\max}}}{Z}\right] = [1 - \epsilon_1, 1 + \epsilon_2]$$

where
$$Z = \mathbb{E}_{a \sim \pi_{\mathrm{old}}} \left[e^{lpha_{\pi_{\mathrm{old}}}} \right]$$
 and $\epsilon_1, \epsilon_2 \geq 0, \epsilon_1 < 1$.

This helps explain why clipping policy ratio works and closes the gap between theory and practice in PPO².

An explanation of the policy update rule

ICML'22

²J. Schulman et al. (2017). *Proximal Policy Optimization Algorithms*. DOI: 10.48550/ARXIV.1707.06347

Introduction	Results	Connections	Conclusion
00000	00000	0000	000

Recall our policy update rule:

$$\pi_{\text{new}} = \pi_{\text{old}} \cdot \frac{e^{\alpha_{\pi_{\text{old}}}}}{\mathbb{E}_{a \sim \pi_{\text{old}}} [e^{\alpha_{\pi_{\text{old}}}}]} \quad \text{where}$$
$$\alpha_{\pi_{\text{old}}} = \frac{A_{\pi_{\text{old}}}(s, a)}{\max_{s, a} |A_{\pi_{\text{old}}}(s, a)|} \cdot \frac{(1 - \gamma)^3}{\gamma^2}$$

Objective of TRPO/PPO²:

$$\max_{\pi} \mathbb{E}_{s \sim d^{\pi_{\text{old}}}, a \sim \pi_{\text{old}}} \left[\frac{\pi(a|s)}{\pi_{\text{old}}(a|s)} A_{\pi_{old}}(s, a) \right]$$

- $\pi(a|s) \uparrow$ to gain weights for large A values
- $\pi(a|s) \downarrow$ to lose weights for small A values

An explanation of the policy update rule

ICML'22

²J. Schulman et al. (2017). *Proximal Policy Optimization Algorithms*. DOI: 10.48550/ARXIV.1707.06347

Introduction 00000	Results	Connections ooeoo	Conclusion

For discrete actions, the update rule can be written as:

$$\pi_{\text{new}}(a^{i}|s) = \pi_{\text{old}}(a^{i}|s) \cdot \frac{e^{A_{\pi_{\text{old}}}(s,a^{i})/C_{\pi_{\text{old}}}}}{\sum_{j} \pi_{\text{old}}(a^{j}|s)e^{A_{\pi_{\text{old}}}(s,a^{j})/C_{\pi_{\text{old}}}}}$$

Introduction	Results	Connections	Conclusion
00000	00000	00000	000

For discrete actions, the update rule can be written as:

$$\begin{aligned} \pi_{\rm new}(a^{i}|s) &= \pi_{\rm old}(a^{i}|s) \cdot \frac{e^{A_{\pi_{\rm old}}(s,a^{i})/C_{\pi_{\rm old}}}}{\sum_{j} \pi_{\rm old}(a^{j}|s)e^{A_{\pi_{\rm old}}(s,a^{j})/C_{\pi_{\rm old}}}} \\ &= \pi_{\rm old}(a^{i}|s) \cdot \frac{e^{\left[Q_{\pi_{\rm old}}(s,a^{i}) - V_{\pi_{\rm old}}(s)\right]/C_{\pi_{\rm old}}}}{\sum_{j} \pi_{\rm old}(a^{j}|s)e^{\left[Q_{\pi_{\rm old}}(s,a^{j}) - V_{\pi_{\rm old}}(s)\right]/C_{\pi_{\rm old}}}} \end{aligned}$$

Introduction	Results	Connections	Conclusion
00000	00000	00000	000

For discrete actions, the update rule can be written as:

$$\begin{aligned} \pi_{\text{new}}(a^{i}|s) &= \pi_{\text{old}}(a^{i}|s) \cdot \frac{e^{A_{\pi_{\text{old}}}(s,a^{i})/C_{\pi_{\text{old}}}}}{\sum_{j} \pi_{\text{old}}(a^{j}|s)e^{A_{\pi_{\text{old}}}(s,a^{j})/C_{\pi_{\text{old}}}}} \\ &= \pi_{\text{old}}(a^{i}|s) \cdot \frac{e^{\left[Q_{\pi_{\text{old}}}(s,a^{i})-\underline{V_{\pi_{\text{old}}}}(s)\right]/C_{\pi_{\text{old}}}}}{\sum_{j} \pi_{\text{old}}(a^{j}|s)e^{\left[Q_{\pi_{\text{old}}}(s,a^{j})-\underline{V_{\pi_{\text{old}}}}(s)\right]/C_{\pi_{\text{old}}}}} \\ &= \frac{\pi_{\text{old}}(a^{i}|s)\omega_{\pi_{\text{old}}}^{i}}{\sum_{j} \pi_{\text{old}}(a^{j}|s)\omega_{\pi_{\text{old}}}^{j}}, \text{ where } \omega_{\pi_{\text{old}}}^{i} = e^{Q_{\pi_{\text{old}}}(s,a^{i})/C_{\pi_{\text{old}}}} \end{aligned}$$

13/16

Introduction 00000	Results	Connections ooeoo	Conclusion

For discrete actions, the update rule can be written as:

$$\begin{aligned} \pi_{\rm new}(a^{i}|s) &= \pi_{\rm old}(a^{i}|s) \cdot \frac{e^{A_{\pi_{\rm old}}(s,a^{i})/C_{\pi_{\rm old}}}}{\sum_{j} \pi_{\rm old}(a^{j}|s)e^{A_{\pi_{\rm old}}(s,a^{j})/C_{\pi_{\rm old}}}} \\ &= \pi_{\rm old}(a^{i}|s) \cdot \frac{e^{\left[Q_{\pi_{\rm old}}(s,a^{i}) - V_{\pi_{\rm old}}(s)\right]/C_{\pi_{\rm old}}}}{\sum_{j} \pi_{\rm old}(a^{j}|s)e^{\left[Q_{\pi_{\rm old}}(s,a^{j}) - V_{\pi_{\rm old}}(s)\right]/C_{\pi_{\rm old}}}} \\ &= \frac{\pi_{\rm old}(a^{i}|s)\omega_{\pi_{\rm old}}^{i}}{\sum_{j} \pi_{\rm old}(a^{j}|s)\omega_{\pi_{\rm old}}^{j}}, \text{ where } \omega_{\pi_{\rm old}}^{i} = e^{Q_{\pi_{\rm old}}(s,a^{i})/C_{\pi_{\rm old}}} \end{aligned}$$

A softmax function of $Q_{\pi_{\rm old}}$ weighted by $\pi_{\rm old}$

An explanation for discrete actions

Introduction	Results	Connections ○○●○○	Conclusion

For discrete actions, the update rule can be written as:

$$\begin{aligned} \pi_{\rm new}(a^{i}|s) &= \pi_{\rm old}(a^{i}|s) \cdot \frac{e^{A_{\pi_{\rm old}}(s,a^{i})/C_{\pi_{\rm old}}}}{\sum_{j} \pi_{\rm old}(a^{j}|s)e^{A_{\pi_{\rm old}}(s,a^{j})/C_{\pi_{\rm old}}}} \\ &= \pi_{\rm old}(a^{i}|s) \cdot \frac{e^{\left[Q_{\pi_{\rm old}}(s,a^{i}) - V_{\pi_{\rm old}}(s,a^{j})\right]/C_{\pi_{\rm old}}}}{\sum_{j} \pi_{\rm old}(a^{j}|s)e^{\left[Q_{\pi_{\rm old}}(s,a^{j}) - V_{\pi_{\rm old}}(s,a^{j})\right]/C_{\pi_{\rm old}}}} \\ &= \frac{\pi_{\rm old}(a^{i}|s)\omega_{\pi_{\rm old}}^{i}}{\sum_{j} \pi_{\rm old}(a^{j}|s)\omega_{\pi_{\rm old}}^{j}}, \text{ where } \omega_{\pi_{\rm old}}^{i} = e^{Q_{\pi_{\rm old}}(s,a^{i})/C_{\pi_{\rm old}}} \end{aligned}$$

A softmax function of $Q_{\pi_{\text{old}}}$ weighted by π_{old}

- 1 Actions with larger Q will be more likely to be selected
- 2 The policy acts like a stochastic analogy of ϵ -greedy

An explanation for discrete actions

Introduction	Results	Connections	Conclusion
00000	00000	00000	000

Relative Entropy Policy Search (REPS)

A similar update rule was derived in REPS³:

$$\max_{\pi} J(\pi) \qquad \implies \qquad \pi(a|s) = \frac{q(s,a) \exp\left(\frac{1}{\eta} \delta_{\theta}(s,a)\right)}{\sum_{b} q(s,b) \exp\left(\frac{1}{\eta} \delta_{\theta}(s,b)\right)}$$

- $p^{\pi}(s,a) = d^{\pi}(s)\pi(a|s)$ is the state-action distribution generated by π
- *q*(*s*,*a*) is the observed data distribution
- $\delta_{\theta}(s, a)$ is the Bellman error

³J. Peters et al. (2010). "Relative Entropy Policy Search". In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence. AAAI'10. Atlanta, Georgia: AAAI Press, pp. 1607–1612

Introduction	Results	Connections	Conclusion
00000	00000	00000	000

Relative Entropy Policy Search (REPS)

A similar update rule was derived in REPS³:

$$\max_{\pi} J(\pi) \implies \pi(a|s) = \frac{q(s,a)\exp\left(\frac{1}{\eta}\delta_{\theta}(s,a)\right)}{\sum_{b} q(s,b)\exp\left(\frac{1}{\eta}\delta_{\theta}(s,b)\right)}$$

- $p^{\pi}(s,a) = d^{\pi}(s)\pi(a|s)$ is the state-action distribution generated by π
- *q*(*s*,*a*) is the observed data distribution
- $\delta_{\theta}(s, a)$ is the Bellman error

If *q* is generated by π_{old} , i.e. $q(s, a) = d^{\pi_{\text{old}}}(s)\pi_{\text{old}}(a|s)$, then our update rule is obtained by replacing $\delta_{\theta}(s, a)$ with $A_{\pi_{\text{old}}}(s, a)$.

³J. Peters et al. (2010). "Relative Entropy Policy Search". In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence. AAAI'10. Atlanta, Georgia: AAAI Press, pp. 1607–1612

Introduction Results	Connections	Conclusion
00000 00000	00000	000

Relative Entropy Policy Search (REPS)

A similar update rule was derived in REPS³:

$$\max_{\substack{\pi \\ s.t. \ D_{KL}(p^{\pi}||q) \le \epsilon}} J(\pi) \implies \pi(a|s) = \frac{q(s,a)\exp\left(\frac{1}{\eta}\delta_{\theta}(s,a)\right)}{\sum_{b} q(s,b)\exp\left(\frac{1}{\eta}\delta_{\theta}(s,b)\right)}$$

However, REPS

- only applies to discrete actions
- needs to optimize the dual problem to determine the Lagrange multiplier η
- no monotonic improvement guarantee

³J. Peters et al. (2010). "Relative Entropy Policy Search". In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence. AAAI'10. Atlanta, Georgia: AAAI Press, pp. 1607–1612

Introduction 00000	Results	Connections 0000●	Conclusion

Soft Actor-Critic (SAC)

We can derive SAC^{4,5} as a special case of our update rule. Note that

$$\pi_{\text{new}}(a|s) = \pi_{\text{old}}(a|s) \cdot \frac{e^{(Q_{\pi_{\text{old}}}(s,a) - V_{\pi_{\text{old}}}(s))/C_{\pi_{\text{old}}}}}{\mathbb{E}_{a \sim \pi_{\text{old}}}\left[e^{(Q_{\pi_{\text{old}}}(s,a) - V_{\pi_{\text{old}}}(s))/C_{\pi_{\text{old}}}}\right]}$$
$$= \frac{1}{Z} \exp\left(Q_{\pi_{\text{old}}}(s,a)/C_{\pi_{\text{old}}} + \log \pi_{\text{old}}(a|s)\right),$$
$$\left[e^{Q_{\pi_{\text{old}}}(s,a)/C_{\pi_{\text{old}}}}\right]$$
 To optimize a policy π , we can minimize the KL or

where $Z = \mathbb{E}_{a \sim \pi_{\text{old}}} \left[e^{Q_{\pi_{\text{old}}}(s,a)/C_{\pi_{\text{old}}}} \right]$. To optimize a policy π , we can minimize the KL of π and π_{new} :

$$\min_{\pi} D_{\mathrm{KL}}\left(\pi(\cdot|s) \left\| \frac{\exp\left(\frac{1}{C_{\pi_{\mathrm{old}}}}\widetilde{Q}_{\pi_{\mathrm{old}}}(s,\cdot)\right)}{Z}\right),\tag{1}$$

where $\widetilde{Q}_{\pi_{\text{old}}} = Q_{\pi_{\text{old}}}(s, a) + C_{\pi_{\text{old}}} \log \pi_{\text{old}}(a|s)$ is the soft Q-function.

⁴T. Haarnoja et al. (Oct. 2018b). "Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor". In: *Proceedings of the* 35th International Conference on Machine Learning. Vol. 80. Proceedings of Machine Learning Research. PMLR, pp. 1861–1870

⁵T. Haarnoja et al. (2018a). Soft Actor-Critic Algorithms and Applications. DOI: 10.48550/ARXIV.1812.05905

Introduction	Results	Connections	Conclusion
00000	00000	00000	●○○

1 Monotonic Guarantee and Function Approximation

2 Tightness of the Bound in Terms of γ

3 Simultaneous Update for Multi-Agent RL

Introduction	Results	Connections	Conclusion
00000		00000	●○○

1 Monotonic Guarantee and Function Approximation

$$\pi_{\text{new}} = \pi_{\text{old}} \cdot \frac{\exp\{A_{\pi_{\text{old}}}/C_{\pi_{\text{old}}}\}}{\mathbb{E}_{a \sim \pi_{\text{old}}} \left[\exp\{A_{\pi_{\text{old}}}/C_{\pi_{\text{old}}}\}\right]}, \text{ where } C_{\pi_{\text{old}}} = \frac{\gamma^2}{(1-\gamma)^3} \cdot \max_{s,a} |A_{\pi_{\text{old}}}(s,a)|.$$

2 Tightness of the Bound in Terms of γ

3 Simultaneous Update for Multi-Agent RL

16/16

Introduction 00000	Results	Connections	Conclusion ●○○

1 Monotonic Guarantee and Function Approximation

$$\pi_{\text{new}} = \pi_{\text{old}} \cdot \frac{\exp\{A_{\pi_{\text{old}}}/C_{\pi_{\text{old}}}\}}{\mathbb{E}_{a \sim \pi_{\text{old}}}[\exp\{A_{\pi_{\text{old}}}/C_{\pi_{\text{old}}}\}]}, \text{ where } C_{\pi_{\text{old}}} = \frac{\gamma^2}{(1-\gamma)^3} \cdot \max_{s,a} |A_{\pi_{\text{old}}}(s,a)|.$$

2 Tightness of the Bound in Terms of γ

$$|J(\pi') - L_{\pi}(\pi')| \le \frac{1}{1 - \gamma} C_{\pi} \mathbb{E}_{s \sim d^{\pi}} [D_{\mathrm{KL}}[\pi' \| \pi](s)]$$

3 Simultaneous Update for Multi-Agent RL

Introduction 00000	Results	Connections	Conclusion ●○○

1 Monotonic Guarantee and Function Approximation

$$\pi_{\text{new}} = \pi_{\text{old}} \cdot \frac{\exp\{A_{\pi_{\text{old}}}/C_{\pi_{\text{old}}}\}}{\mathbb{E}_{a \sim \pi_{\text{old}}} \left[\exp\{A_{\pi_{\text{old}}}/C_{\pi_{\text{old}}}\}\right]}, \text{ where } C_{\pi_{\text{old}}} = \frac{\gamma^2}{(1-\gamma)^3} \cdot \max_{s,a} |A_{\pi_{\text{old}}}(s,a)|.$$

2 Tightness of the Bound in Terms of γ

$$|J(\pi') - L_{\pi}(\pi')| \le \frac{1}{1 - \gamma} C_{\pi} \mathbb{E}_{s \sim d^{\pi}} [D_{\mathrm{KL}}[\pi' \| \pi](s)]$$

3 Simultaneous Update for Multi-Agent RL

$$\pi_{\text{new}}^{i} = \pi_{\text{old}}^{i} \cdot \frac{e^{lpha_{\pi_{\text{old}}}}}{\mathbb{E}_{a \sim \pi_{\text{old}}} [e^{lpha_{\pi_{\text{old}}}}]} \text{ and } \pi_{\text{new}}^{-i} = \pi_{\text{old}}^{-i}$$

This material is based upon work supported by the National Science Foundation under Grant No. ECCS 1917275. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Thank you for your attention!

Part I

Appendix

Haarnoja, T. et al. (2018a). Soft Actor-Critic Algorithms and Applications. DOI: 10.48550/ARXIV.1812.05905.

- Haarnoja, T. et al. (Oct. 2018b). "Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor". In: Proceedings of the 35th International Conference on Machine Learning. Vol. 80. Proceedings of Machine Learning Research. PMLR, pp. 1861–1870.
- Peters, J., K. Mülling, and Y. Altün (2010). "Relative Entropy Policy Search". In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence. AAAI'10. Atlanta, Georgia: AAAI Press, pp. 1607–1612.
- Schulman, J. et al. (2015). "Trust Region Policy Optimization". In: Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37. ICML'15. Lille, France: JMLR.org, pp. 1889–1897.

Schulman, J. et al. (2017). Proximal Policy Optimization Algorithms. DOI: 10.48550/ARXIV.1707.06347.