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Value-Based Method

• PI: greedy policy: a∗ = argmax
a

Qk−1(s, a)⇒ πk

• PE: T Q(s, a) ≜ r(s, a) + γEs′∼P,a′∼πk [Q(s′, a′)]⇒ Qk

Policy Search Method

• Policy is parameterized by π(a|s; θ)
• Policy update: θk+1 ← θk +∆θ (policy gradient, random search, ...)

Advantages:

1 can learn stochastic policies

2 better convergence

3 effective for continuous actions

Q0 PI−→ π1 PE−−→ Q1 PI−→ · · · PE−−→ Q∗
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What are the limitations?

• only apply to parameterized policies

• difficult to integrate prior policy knowledge
• sample inefficiency and high variance

∇θJ(θ) = Eτ∼πθ
[∇θ log πθ(a|s)Qπθ

(s, a)]

• no improvement guarantee due to inappropriate choice of stepsize

What if we directly search policy in a function space?
• optimize a functional

max
π

J(π), s.t. π ∈ Π

• A closed-form solution solving all these limitations?
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Modeling

Infinite horizon MDPM = {S,A,P, r, γ, ρ0}:
• S
• A
• P
• r
• γ

• ρ0

• objective: find an optimal policy π∗ so that

– state space
– action space

– transition kernel
– reward function
– discount factor
– distribution of s0

s ∈ S ⊆ Rm (continuous)
a ∈ A ⊆ Rn or A = {a1, . . . , an}
S × A× S → [0,∞) (unknown)

S ×A → [rmin, rmax] (unknown)
γ → [0, 1)
S → [0,∞)

π∗ = argmax
π

J(π) where J(π) = Eτ∼π

[∑∞
t=0 γ

tr(st, at)
]

τ = (s0, a0, s1, . . . ), s0 ∼ ρ0(·), st+1 ∼ P(·|st, at), at ∼ π(·|st)
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Modeling

Infinite horizon MDPM = {S,A,P, r, γ, ρ0}

Definitions and Notations:

• Vπ(s) = Eat,st+1,...

[∑∞
l=t γ

l−tr(sl, al)|st = s, π
]

• Qπ(s, a) = Est+1,at+1,...

[∑∞
l=t γ

l−tr(sl, al)|st = s, at = s, π
]

• Aπ(s, a) = Qπ(s, a)− Vπ(s)

• dπ: discounted state visitation density

dπ(s) = (1− γ)[ρπ0 (s) + γρπ1 (s) + γ2ρπ2 (s)] = (1− γ)

∞∑
t=0

γtρπt (s)

where ρπt (·) is the distribution of the state at step t.
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Result 1: A Closed-From Policy Update Rule

Theorem (Monotonic Improvement Guarantee)
For any stochastic policies πnew, πold that are continuously differentiable on the state space
S, the inequality

J(πnew) ≥ J(πold) holds when πnew = πold ·
eαπold

Ea∼πold [e
απold ]

where απold = Aπold/Cπold and Cπold is a constant

Cπold =
γ2ϵ

(1− γ)3 , ϵ = max
s,a
|Aπold(s, a)|, γ ∈ [0.5, 1).

• The policy update rule is off-policy
• Derived from TRPO1 based on a new bound on policy performance
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1J. Schulman et al. (2015). “Trust Region Policy Optimization”. In: Proceedings of the 32nd International Conference on
International Conference on Machine Learning - Volume 37. ICML’15. Lille, France: JMLR.org, pp. 1889–1897
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Trust Region Policy Optimization (TRPO)

1 Approximate J(π) around πk by a surrogate model

Lπk(π) = J(πk) +
1

1− γ
Es∼dπk ,a∼π[Aπk(s, a)]

2 Restrict policy search to the neighborhood of πk

Bound of the approximation error:∣∣J(π′)− Lπk(π
′)
∣∣ ≤ Cmax

s
DKL[π

′∥πk](s),

where C =
4γϵ

(1− γ)2 , ϵ = max
s,a
|Aπk(s, a)|

Lower bound of policy performance:

J(π′) ≥ Lπk(π
′)− Cmax

s
DKL[π

′∥πk](s) Maximizing the lower bound
guarantees an improved policy

max
π′

Lπk(π
′)

s.t. Es∼dπk [DKL[π
′||πk](s)] ≤ δ≈

Approximation error
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Result 2: A Tighter Lower Bound on Policy Performance

Theorem (Upper Bound on Surrogate Approximation Error)

For any stochastic policies π′, π and discount factor γ ∈ [0.5, 1), the following bound holds:∣∣J(π′)− Lπ(π
′)
∣∣ ≤ 1

1− γ
CπEs∼dπ [DKL[π

′∥π](s)] ,

where Cπ =
γ2ϵ

(1− γ)3 , ϵ = max
s,a
|Aπ(s, a)|.

A new lower bound on performance:

J(π′) ≥ Lπ(π
′)− 1

1− γ
CπEs∼dπ [DKL[π

′∥π](s)]

This result relates the bound to the expected KL, which is tighter than the max KL.
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Derive the Update Rule using Calculus of Variation

The lower bound around πk:

Maximizing J(π′) is equivalent to:

J(π′) = J(πk) +
1

1− γ
Es∼dπ,a∼π′

[
Aπk(s, a)− Cπk log

π′(a|s)
πk(a|s)

]

max
π′

∫∫
dπk(s)π′(a|s)

[
Aπk(s, a)− Cπk log

π′(a|s)
πk(a|s)

]
dsda

s.t.
∫

π′(a|s)da = 1
(1)

Euler-Lagrange equation: Aπk − Cπk log π
′ − Cπk + Cπk log πk − λ = 0

ICML’22 9 / 16
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Result 3: The Update Rule for Multi-Agent RL

Corollary

For any stochastic policies πi
new, π

i
old of agent i that are continuously differentiable on the

local observation space Oi, the inequality,

J(πnew) ≥ J(πold) holds when

where π−i
new, π

−i
old are the joint policies of all agents except i.

πi
new = πi

old ·
eαπold

Ea∼πold [e
απold ]

and π−i
new = π−i

old,

Environment becomes
stationary for agent i

ICML’22 10 / 16
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Connections to Prior Work

• Proximal Policy Optimization

• Value-based Methods

• Relative Entropy Policy Search

• Soft Actor-Critic
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Proximal Policy Optimization (PPO)

Recall our policy update rule:

πnew = πold ·
eαπold

Ea∼πold [e
απold ]

where

απold =
Aπold(s, a)

maxs,a |Aπold(s, a)|
· (1− γ)3

γ2

Assume απold ∈ [αmin, αmax], then we have

πnew

πold
∈
[

eαmin

Z
,

eαmax

Z

]
= [1− ϵ1, 1 + ϵ2]

where Z = Ea∼πold [e
απold ] and ϵ1, ϵ2 ≥ 0, ϵ1 < 1.

𝑓 𝑥 = 𝑒!distribution of 𝑒!

0𝛼!"# 𝛼!$%

𝑒& > 𝔼 𝑒& ⟹ 𝜋(𝑎|𝑠) ↑

𝑒& < 𝔼 𝑒& ⟹ 𝜋(𝑎|𝑠) ↓

𝑒&!"#

𝑒&!$%

𝔼 𝑒&

An explanation of the policy update rule

This helps explain why clipping policy ratio works and
closes the gap between theory and practice in PPO2.

Objective of TRPO/PPO2:

max
π

Es∼dπold ,a∼πold

[
π(a|s)

πold(a|s)
Aπold(s, a)

]
• π(a|s) ↑ to gain weights for large A values
• π(a|s) ↓ to lose weights for small A values

2J. Schulman et al. (2017). Proximal Policy Optimization Algorithms. DOI: 10.48550/ARXIV.1707.06347 ICML’22 12 / 16
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Value-Based Methods

For discrete actions, the update rule can be written as:

πnew(ai|s) = πold(ai|s) · eAπold (s,ai)/Cπold∑
j πold(aj|s)eAπold (s,aj)/Cπold

= πold(ai|s) · e
[

Qπold (s,ai)����−Vπold (s)
]
/Cπold∑

j πold(aj|s)e
[

Qπold (s,aj)����−Vπold (s)
]
/Cπold

=
πold(ai|s)ωi

πold∑
j πold(aj|s)ωj

πold

, where ωi
πold

= eQπold (s,ai)/Cπold

Probability
…

 …
 

1

…
 …

 

An explanation for discrete actions

1 Actions with larger Q will be more likely to be selected

2 The policy acts like a stochastic analogy of ϵ-greedy

A softmax function of Qπold weighted by πold

ICML’22 13 / 16
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Introduction Results Connections Conclusion

Relative Entropy Policy Search (REPS)

A similar update rule was derived in REPS3:

max
π

J(π)

s.t. DKL(pπ||q) ≤ ϵ
=⇒ π(a|s) =

q(s, a) exp
( 1
η δθ(s, a)

)∑
b q(s, b) exp

( 1
η δθ(s, b)

)
• pπ(s, a) = dπ(s)π(a|s) is the state-action distribution generated by π

• q(s, a) is the observed data distribution

• δθ(s, a) is the Bellman error

If q is generated by πold, i.e. q(s, a) = dπold(s)πold(a|s), then our update rule is obtained by replacing
δθ(s, a) with Aπold(s, a).

However, REPS

• only applies to discrete actions

• needs to optimize the dual problem to determine the Lagrange multiplier η

• no monotonic improvement guarantee

3J. Peters et al. (2010). “Relative Entropy Policy Search”. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence. AAAI’10. Atlanta,
Georgia: AAAI Press, pp. 1607–1612
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Soft Actor-Critic (SAC)

We can derive SAC4,5 as a special case of our update rule. Note that

πnew(a|s) = πold(a|s) ·
e(Qπold (s,a)����−Vπold (s))/Cπold

Ea∼πold

[
e(Qπold (s,a)����−Vπold (s))/Cπold

]
=

1
Z
exp

(
Qπold(s, a)/Cπold + log πold(a|s)

)
,

where Z = Ea∼πold

[
eQπold (s,a)/Cπold

]
. To optimize a policy π, we can minimize the KL of π and πnew:

min
π

DKL

(
π(·|s)

∥∥∥∥∥exp
( 1

Cπold
Q̃πold(s, ·)

)
Z

)
, (1)

where Q̃πold = Qπold(s, a) + Cπold log πold(a|s) is the soft Q-function.

4T. Haarnoja et al. (Oct. 2018b). “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor”. In: Proceedings of the
35th International Conference on Machine Learning. Vol. 80. Proceedings of Machine Learning Research. PMLR, pp. 1861–1870

5T. Haarnoja et al. (2018a). Soft Actor-Critic Algorithms and Applications. DOI: 10.48550/ARXIV.1812.05905
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Conclusion & Future Work

1 Monotonic Guarantee and Function Approximation

πnew = πold ·
exp{Aπold/Cπold}

Ea∼πold [exp{Aπold/Cπold}]
, where Cπold =

γ2

(1− γ)3 ·max
s,a
|Aπold(s, a)|.

2 Tightness of the Bound in Terms of γ

∣∣J(π′)− Lπ(π
′)
∣∣ ≤ 1

1− γ
CπEs∼dπ [DKL[π

′∥π](s)]

3 Simultaneous Update for Multi-Agent RL

πi
new = πi

old ·
eαπold

Ea∼πold [e
απold ]

and π−i
new = π−i

old
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