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Coarse-Graining	for	Molecular	Modeling
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• Coarse-grained modeling can greatly
accelerate speed of molecular dynamics

• However, recovering fine-grained
coordinates is challenging, due to loss of
information.



Super-resolution for molecular geometries

𝑋 ∈ ℝ$	×	'	 𝑥 ∈ ℝ)	×	'	



Our	contributions	

• We	proposed	a	generative	modeling	framework	(CGVAE)	for	the	backmapping	
task	using	geometric	deep	learning,	i.e.	modeling	p(x|X)

• Generality	

• Geometric	constraints	

• One-to-many stochastic	map

A	model	with	geometric	data	representations	that	work	for	
arbitrary	mapping	and	resolution	(it	is	designed	to	work	very	
coarse	representations)

We	derive	the	geometric	constraints	for	backmapping,	we	
explicitly	incorporate	these	constraints	in	our	model	

Explicitly	model	p(x|X)

• Evaluation	metrics and protocols



Particle-based Coarse-Graining



The	system	rotates,	reflects and	translates the	same	way	before	and	after	coarse-
graining.



The	backmapping	transformation	needs	to	be	E(3)	equivariant,	and	produce	Fine-
grained	geometries	that	are	compatible	with	the	Coarse-grained	geometries.



Model Design



Encoder q(z|x, X)
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Prior p(z|X)
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Decoder p(x|X, z)

scalar

vector

pseudo-scalar

pseudo-vector

mix geometric information via
message-passing

compile relative
coordinate prediction
using learned geometry
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Compile	prediction	for	geometries
Channel	selection	

and	
concatenation

Re-centering

lifting



Experiment – datasets, metrics
• Datasets

• Alanine dipeptide trajectory: 22 atoms, a classical molecular system for
benchmarking enhanced Sampling

• Chignolin trajectory: 175 atoms, a mini-protein that features folded and
unfolded states

• Metrics
• Reconstruction RMSD – evaluates the model’s capacity to reconstruct fine-
grained geometries. The lower the better

• Sampling RMSD – compares the average RMSD between generated
structures and reference structures. The higher the better.

• Graph Validity – measures how well the generated FG geometries preserve
the original chemical bond graphs. The lower the better

• Coarse-grained mapping generations:
• We use Coarse-grained auto-encoders[1] to generate a mapping for our
experiments. Other mapping also works, even random mappings.

Wang,	W.,	&	Gómez-Bombarelli,	R.	(2019).	Coarse-graining	auto-encoders	for	molecular	dynamics. npj Computational	Materials, 5(1),	1-9.

Alanine	dipeptide	

Chignolin



Experiments

• We	benchmark	our	model	at	different	level	of	
coarsening	

• Accurate backmapping is achieved with even very
coarse representations	– much	coarser	than	usual	
CG	mapping	choices

Reconstruction
Accuracy	↓

Graph	
Validity	↓

Sample	
diversity↑

3 5 80.0

0.5

1.0

1.5

2.0

R
M

SD
re

co
n.
(Å
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