On Transportation of Mini-batches: A Hierarchical Approach

Khai Nguyen¹, Dang Nguyen², Quoc Nguyen², Tung Pham², Hung Bui², Dinh Phung³, Trung Le³, Nhat Ho¹

¹Department of Statistics and Data Sciences, University of Texas at Austin

²VinAI Research

³Monash University

Optimal Transport

Mini-batch Optimal Transport

The number of supports is large? e.g., millions

Repeated computation? e.g., deep learning

- Impossible to store the cost matrix C in the computational graph
- ☐ Slow computation of OT losses which leads to slow training

Mini-batch Optimal Transport

Batch of Mini-batches Optimal Transport

Matching pairs of mini-batches with optimal transport ground cost

Batch of Mini-batches Optimal Transport

Matching pairs of mini-batches with optimal transport ground cost

$$\frac{1}{2}$$
 X_2 $\frac{1}{2}$ Y_1 $\frac{1}{2}$

Training deep networks with BoMb-OT loss

Experiments on Deep Domain Adaptation

Scenario	k	m-OT	BoMb-OT	m-UOT	BoMb-UOT
$S \rightarrow M$	1	90.98 ± 1.00	90.98 ± 1.00	99.10 ± 0.05	99.10 ± 0.05
	2	92.66 ± 0.71	$\textbf{93.36} \pm \textbf{0.51}$	98.99 ± 0.08	$\textbf{99.15} \pm \textbf{0.07}$
	4	93.70 ± 0.53	$\textbf{94.79} \pm \textbf{0.18}$	99.08 ± 0.08	$\textbf{99.19} \pm \textbf{0.05}$
	8	94.17 ± 0.39	$\textbf{95.23} \pm \textbf{0.44}$	98.94 ± 0.03	$\textbf{99.09} \pm \textbf{0.07}$
$U \rightarrow M$	1	92.64 ± 0.45	92.64 ± 0.45	98.14 ± 0.21	98.14 ± 0.21
	2	92.85 ± 0.34	$\textbf{94.76} \pm \textbf{0.12}$	98.34 ± 0.11	$\textbf{98.44} \pm \textbf{0.05}$
	4	93.83 ± 0.56	$\textbf{95.64} \pm \textbf{0.26}$	98.55 ± 0.04	$\textbf{98.60} \pm \textbf{0.02}$
	8	94.69 ± 0.73	$\textbf{95.90} \pm \textbf{0.33}$	98.62 ± 0.08	$\textbf{98.70} \pm \textbf{0.06}$

Adapting classification on digits datasets

k	m-OT	BoMb-OT	m-UOT	BoMb-UOT		
1	65.29 ± 0.26	65.29 ± 0.26		72.07 ± 0.07		
2	65.46 ± 0.33	$\textbf{66.98} \pm \textbf{0.09}$	72.52 ± 0.14	$\textbf{73.72} \pm \textbf{0.13}$		
4	65.51 ± 0.17	$\textbf{67.71} \pm \textbf{0.05}$	72.95 ± 0.06	$\textbf{74.65} \pm \textbf{0.03}$		

Adapting classification on VISDA dataset

Experiments on Deep Domain Adaptation

Adapting classification on Office-Home datasets

Methods	A2C	A2P	A2R	C2A	C2P	C2R	P2A	P2C	P2R	R2A	R2C	R2P	Avg
RESNET-50 (*)	34.90	50.00	58.00	37.40	41.90	46.20	38.50	31.20	60.40	53.90	41.20	59.90	46.10
DANN (*)	44.30	59.80	69.80	48.00	58.30	63.00	49.70	42.70	70.60	64.00	51.70	78.30	58.30
CDAN-E (*)	52.50	71.40	76.10	59.70	69.90	71.50	58.70	50.30	77.50	70.50	57.90	83.50	66.60
ALDA (*)	52.20	69.30	76.40	58.70	68.20	71.10	57.40	49.60	76.80	70.60	57.30	82.50	65.80
ROT (*)	47.20	71.80	76.40	58.60	68.10	70.20	56.50	45.00	75.80	69.40	52.10	80.60	64.30
m-OT	49.76	68.37	74.40	59.64	64.69	68.63	56.12	46.69	74.37	67.27	54.45	77.95	63.53
m-UOT	54.99	74.45	80.78	65.66	74.93	74.91	64.70	53.42	80.01	74.58	59.88	83.73	70.17
BoMb-OT (Ours)	50.16	69.57	74.84	60.24	65.18	69.15	57.48	47.42	74.88	67.39	54.19	78.59	64.09
BoMb-UOT (Ours)	56.23	75.24	80.53	65.80	74.57	75.38	66.15	53.21	80.03	74.25	60.12	83.30	70.40

Other applications including deep generative models, color transfer, approximate Bayesian computation, gradient flow are in the paper.

Conclusion

- Solving an additional optimal transport problem to match mini-batches could improve the performance of applications that use mini-batch OT losses.
 - ☐ Three steps algorithm.

Using different types of transportation e.g., unbalanced optimal transport (UOT) could improve further the performance.

Thank you for listening!

Khai Nguyen: khainb@utexas.edu @KhaiBaNguyen