On Transportation of Mini-batches: A Hierarchical Approach Khai Nguyen¹, Dang Nguyen², Quoc Nguyen², Tung Pham², Hung Bui², Dinh Phung³, Trung Le³, Nhat Ho¹ ¹Department of Statistics and Data Sciences, University of Texas at Austin ²VinAI Research ³Monash University #### **Optimal Transport** #### Mini-batch Optimal Transport The number of supports is large? e.g., millions Repeated computation? e.g., deep learning - Impossible to store the cost matrix C in the computational graph - ☐ Slow computation of OT losses which leads to slow training Mini-batch Optimal Transport #### Batch of Mini-batches Optimal Transport Matching pairs of mini-batches with optimal transport ground cost #### Batch of Mini-batches Optimal Transport Matching pairs of mini-batches with optimal transport ground cost $$\frac{1}{2}$$ X_2 $\frac{1}{2}$ Y_1 $\frac{1}{2}$ #### Training deep networks with BoMb-OT loss ## Experiments on Deep Domain Adaptation | Scenario | k | m-OT | BoMb-OT | m-UOT | BoMb-UOT | |-------------------|---|------------------|------------------------------------|------------------|------------------------------------| | $S \rightarrow M$ | 1 | 90.98 ± 1.00 | 90.98 ± 1.00 | 99.10 ± 0.05 | 99.10 ± 0.05 | | | 2 | 92.66 ± 0.71 | $\textbf{93.36} \pm \textbf{0.51}$ | 98.99 ± 0.08 | $\textbf{99.15} \pm \textbf{0.07}$ | | | 4 | 93.70 ± 0.53 | $\textbf{94.79} \pm \textbf{0.18}$ | 99.08 ± 0.08 | $\textbf{99.19} \pm \textbf{0.05}$ | | | 8 | 94.17 ± 0.39 | $\textbf{95.23} \pm \textbf{0.44}$ | 98.94 ± 0.03 | $\textbf{99.09} \pm \textbf{0.07}$ | | $U \rightarrow M$ | 1 | 92.64 ± 0.45 | 92.64 ± 0.45 | 98.14 ± 0.21 | 98.14 ± 0.21 | | | 2 | 92.85 ± 0.34 | $\textbf{94.76} \pm \textbf{0.12}$ | 98.34 ± 0.11 | $\textbf{98.44} \pm \textbf{0.05}$ | | | 4 | 93.83 ± 0.56 | $\textbf{95.64} \pm \textbf{0.26}$ | 98.55 ± 0.04 | $\textbf{98.60} \pm \textbf{0.02}$ | | | 8 | 94.69 ± 0.73 | $\textbf{95.90} \pm \textbf{0.33}$ | 98.62 ± 0.08 | $\textbf{98.70} \pm \textbf{0.06}$ | Adapting classification on digits datasets | k | m-OT | BoMb-OT | m-UOT | BoMb-UOT | | | |---|------------------|------------------------------------|------------------|------------------------------------|--|--| | 1 | 65.29 ± 0.26 | 65.29 ± 0.26 | | 72.07 ± 0.07 | | | | 2 | 65.46 ± 0.33 | $\textbf{66.98} \pm \textbf{0.09}$ | 72.52 ± 0.14 | $\textbf{73.72} \pm \textbf{0.13}$ | | | | 4 | 65.51 ± 0.17 | $\textbf{67.71} \pm \textbf{0.05}$ | 72.95 ± 0.06 | $\textbf{74.65} \pm \textbf{0.03}$ | | | Adapting classification on VISDA dataset ### Experiments on Deep Domain Adaptation #### Adapting classification on Office-Home datasets | Methods | A2C | A2P | A2R | C2A | C2P | C2R | P2A | P2C | P2R | R2A | R2C | R2P | Avg | |-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | RESNET-50 (*) | 34.90 | 50.00 | 58.00 | 37.40 | 41.90 | 46.20 | 38.50 | 31.20 | 60.40 | 53.90 | 41.20 | 59.90 | 46.10 | | DANN (*) | 44.30 | 59.80 | 69.80 | 48.00 | 58.30 | 63.00 | 49.70 | 42.70 | 70.60 | 64.00 | 51.70 | 78.30 | 58.30 | | CDAN-E (*) | 52.50 | 71.40 | 76.10 | 59.70 | 69.90 | 71.50 | 58.70 | 50.30 | 77.50 | 70.50 | 57.90 | 83.50 | 66.60 | | ALDA (*) | 52.20 | 69.30 | 76.40 | 58.70 | 68.20 | 71.10 | 57.40 | 49.60 | 76.80 | 70.60 | 57.30 | 82.50 | 65.80 | | ROT (*) | 47.20 | 71.80 | 76.40 | 58.60 | 68.10 | 70.20 | 56.50 | 45.00 | 75.80 | 69.40 | 52.10 | 80.60 | 64.30 | | m-OT | 49.76 | 68.37 | 74.40 | 59.64 | 64.69 | 68.63 | 56.12 | 46.69 | 74.37 | 67.27 | 54.45 | 77.95 | 63.53 | | m-UOT | 54.99 | 74.45 | 80.78 | 65.66 | 74.93 | 74.91 | 64.70 | 53.42 | 80.01 | 74.58 | 59.88 | 83.73 | 70.17 | | BoMb-OT (Ours) | 50.16 | 69.57 | 74.84 | 60.24 | 65.18 | 69.15 | 57.48 | 47.42 | 74.88 | 67.39 | 54.19 | 78.59 | 64.09 | | BoMb-UOT (Ours) | 56.23 | 75.24 | 80.53 | 65.80 | 74.57 | 75.38 | 66.15 | 53.21 | 80.03 | 74.25 | 60.12 | 83.30 | 70.40 | Other applications including deep generative models, color transfer, approximate Bayesian computation, gradient flow are in the paper. #### Conclusion - Solving an additional optimal transport problem to match mini-batches could improve the performance of applications that use mini-batch OT losses. - ☐ Three steps algorithm. Using different types of transportation e.g., unbalanced optimal transport (UOT) could improve further the performance. Thank you for listening! Khai Nguyen: khainb@utexas.edu @KhaiBaNguyen