

A Natural Actor-Critic Framework for Zero-Sum Markov Games

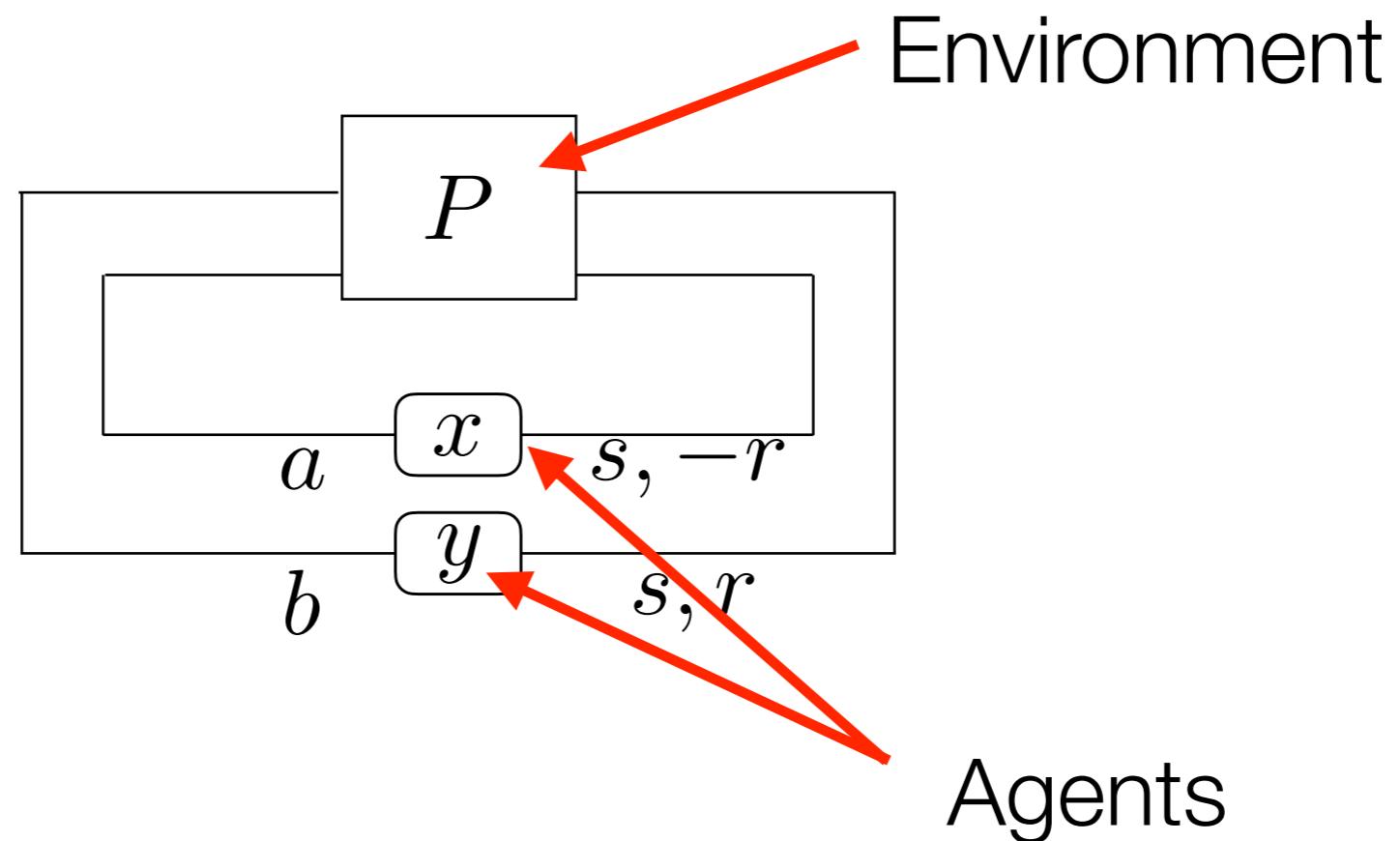
Ahmet Alacaoglu, UW-Madison

Luca Viano, EPFL

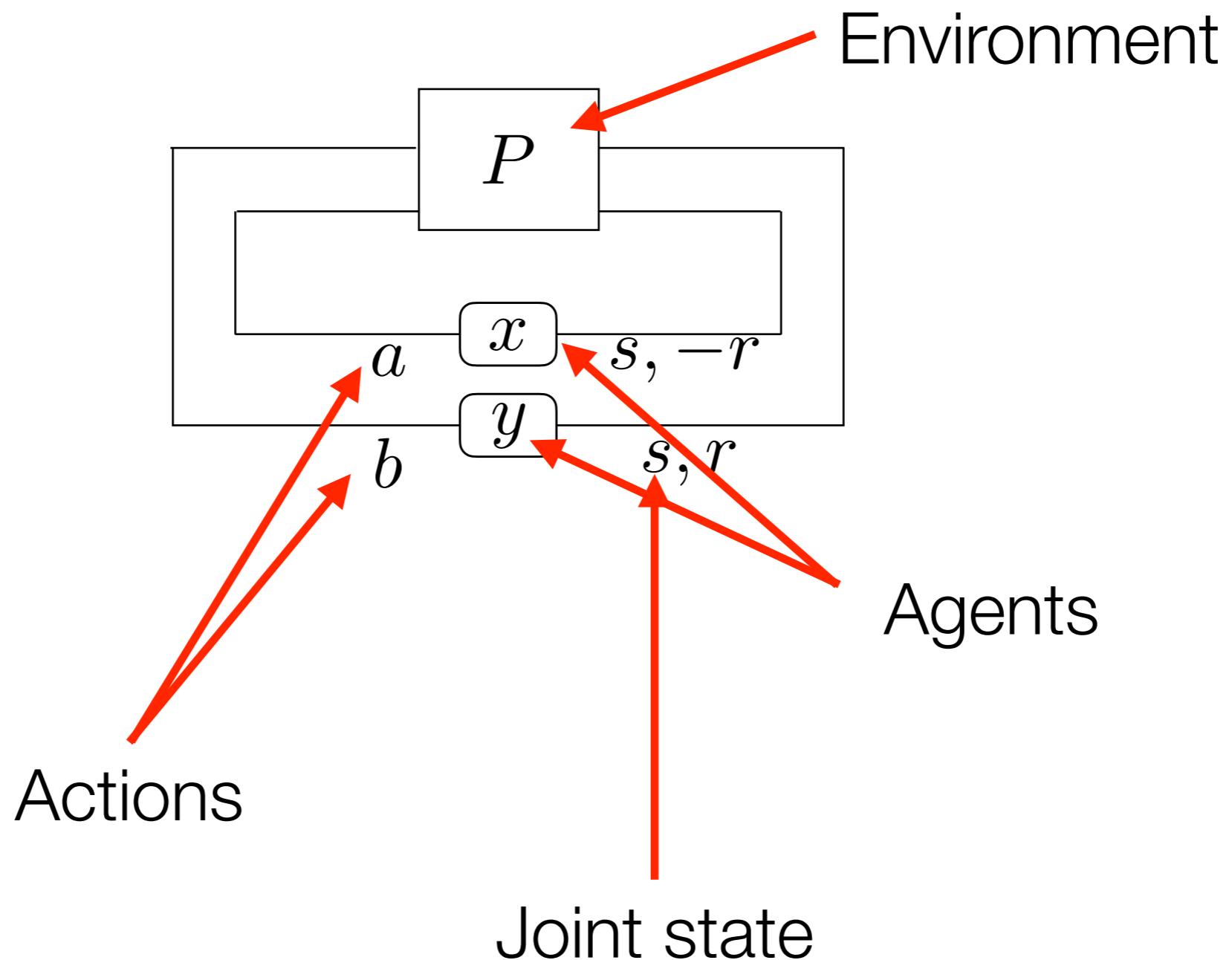
Niao He, ETH Zurich

Volkan Cevher, EPFL

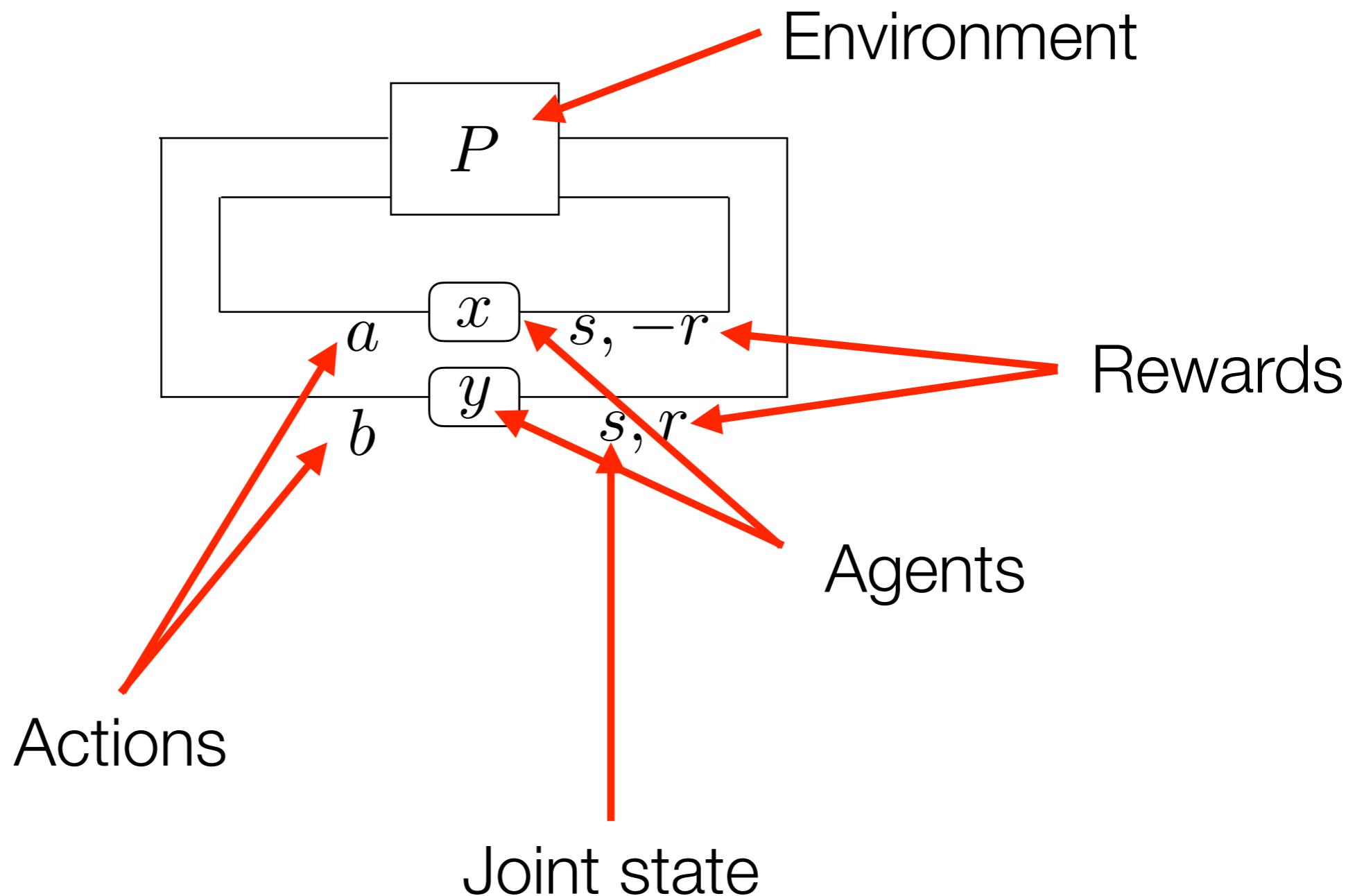
Setup: Markov Games



Setup: Markov Games



Setup: Markov Games



finite state/action spaces: $|S|, |A|, |B|$

“tabular case”

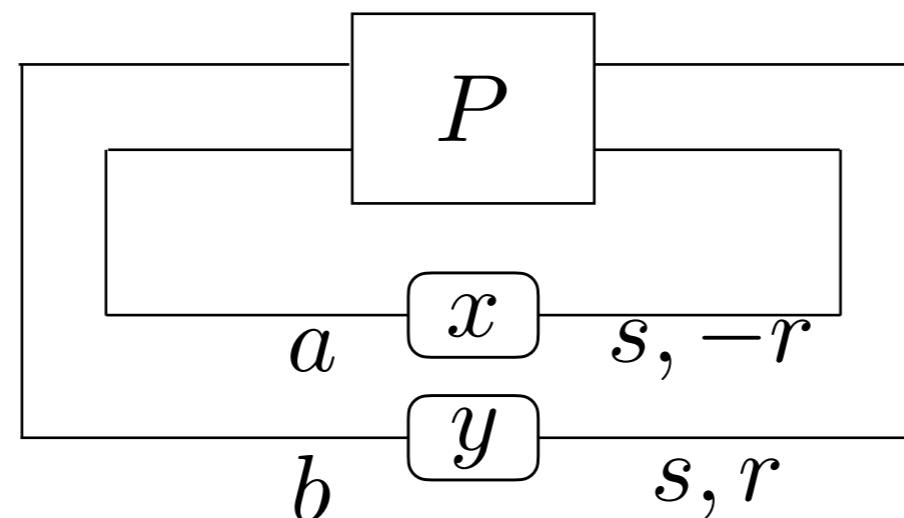
Setup: Markov Games

Markov games:

$$\min_{x \in \Delta} \max_{y \in \Delta} \mathbb{E}_{s \sim \rho_0} V^{x,y}(s)$$

$$V^{x,y}(s) = \mathbb{E}_{x,y} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, b_t) \mid s_0 = s \right],$$

with $a_t \sim x(\cdot | s_t), b_t \sim y(\cdot | s_t), s_{t+1} \sim P(\cdot | s_t, a_t, b_t)$



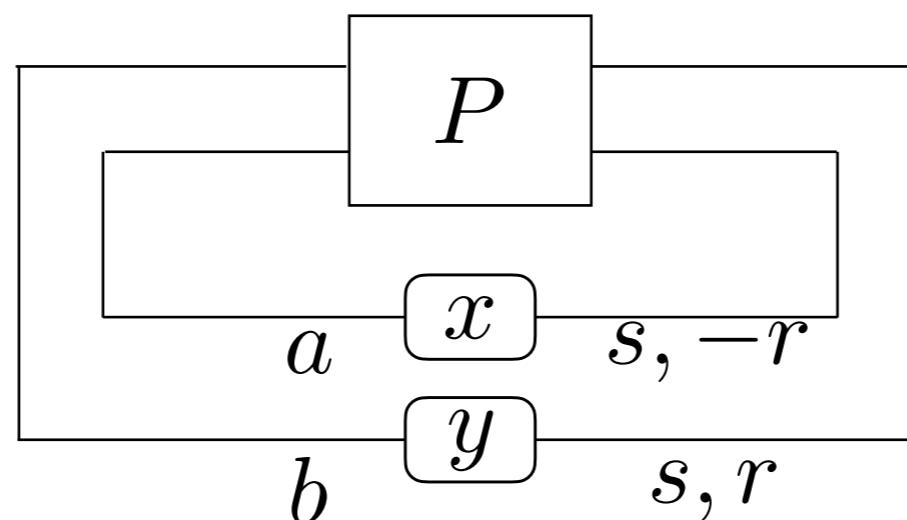
Setup: Markov Games

Markov games:

$$\min_{x \in \Delta} \max_{y \in \Delta} \mathbb{E}_{s \sim \rho_0} V^{x,y}(s)$$

$$V^{x,y}(s) = \mathbb{E}_{x,y} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, b_t) \mid s_0 = s \right],$$

with $a_t \sim x(\cdot | s_t)$, $b_t \sim y(\cdot | s_t)$, $s_{t+1} \sim P(\cdot | s_t, a_t, b_t)$



Setup: Markov Games

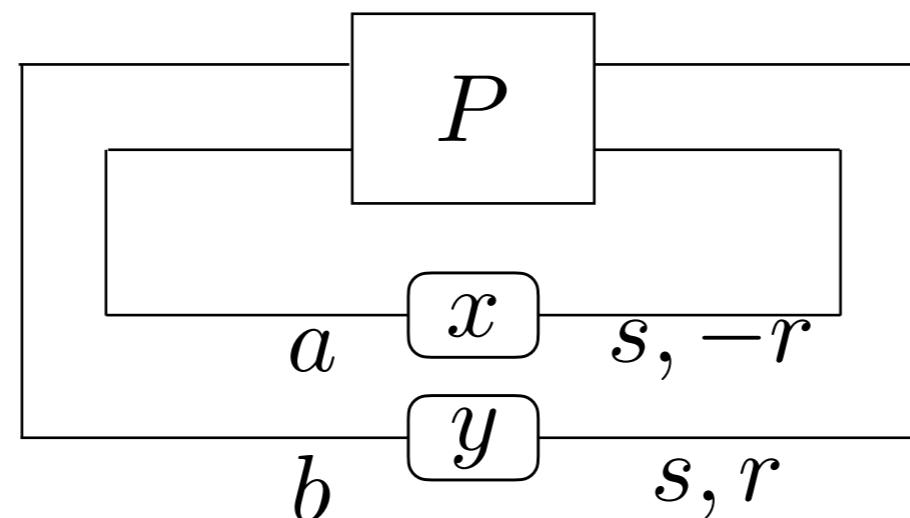
Markov games:

$$\min_{x \in \Delta} \max_{y \in \Delta} \mathbb{E}_{s \sim \rho_0} V^{x,y}(s)$$

Nonconvex-
nonconcave

$$V^{x,y}(s) = \mathbb{E}_{x,y} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, b_t) \mid s_0 = s \right],$$

with $a_t \sim x(\cdot | s_t)$, $b_t \sim y(\cdot | s_t)$, $s_{t+1} \sim P(\cdot | s_t, a_t, b_t)$



Setup: Markov Games

Markov games:

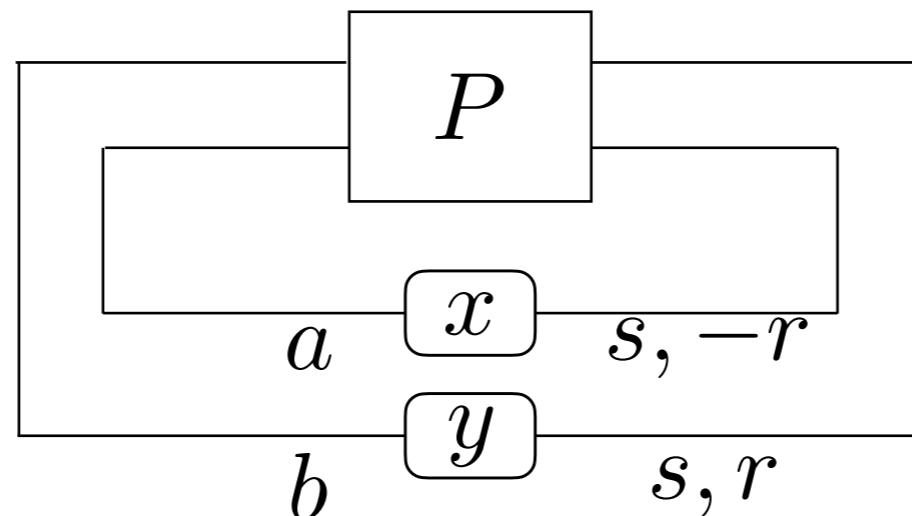
$$\min_{x \in \Delta} \max_{y \in \Delta} \mathbb{E}_{s \sim \rho_0} V^{x,y}(s)$$

Nonconvex-
nonconcave

$$V^{x,y}(s) = \mathbb{E}_{x,y} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, b_t) \mid s_0 = s \right],$$

with $a_t \sim x(\cdot | s_t)$, $b_t \sim y(\cdot | s_t)$, $s_{t+1} \sim P(\cdot | s_t, a_t, b_t)$

still
tractable
↓
 ε -Nash eq.



Agents only access their own actions

Setup: Markov Games

Markov games:

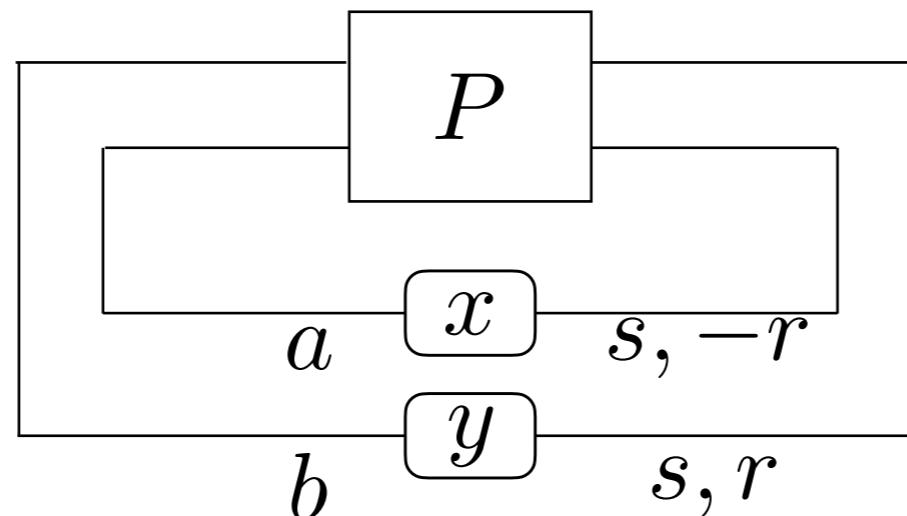
$$\min_{x \in \Delta} \max_{y \in \Delta} \mathbb{E}_{s \sim \rho_0} V^{x,y}(s)$$

Nonconvex-
nonconcave

$$V^{x,y}(s) = \mathbb{E}_{x,y} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, b_t) \mid s_0 = s \right],$$

with $a_t \sim x(\cdot | s_t)$, $b_t \sim y(\cdot | s_t)$, $s_{t+1} \sim P(\cdot | s_t, a_t, b_t)$

still
tractable
↓
 ε -Nash eq.



Sample Complexity Results

Solve as a sequence of single-agent MDP and zero-sum matrix game

Policy mirror descent + stochastic FoRB

$$\mathcal{O}(\varepsilon^{-2}) \xleftarrow{\text{---}} \varepsilon\text{-Nash eq.}$$

matching the sample complexity
of solving single-agent MDP

Sample Complexity Results

Solve as a sequence of single-agent MDP and zero-sum matrix game

Policy mirror descent + stochastic FoRB

$$\mathcal{O}(\varepsilon^{-2}) \xleftarrow{\text{---}} \varepsilon\text{-Nash eq.}$$

matching the sample complexity
of solving single-agent MDP

Careful analysis of the bias
between the two stages

Sample Complexity Results

Solve as a sequence of single-agent MDP and zero-sum matrix game

Policy mirror descent + stochastic FoRB

$$\mathcal{O}(\varepsilon^{-2}) \xleftarrow{\text{---}} \varepsilon\text{-Nash eq.}$$

matching the sample complexity
of solving single-agent MDP

Careful analysis of the bias
between the two stages

Assumption: lower bounded policies (same as single agent)

Sample Complexity Results

Solve as a sequence of single-agent MDP and zero-sum matrix game

Policy mirror descent + stochastic FoRB

$$\mathcal{O}(\varepsilon^{-4}) \xleftarrow{\varepsilon\text{-Nash eq.}}$$

~~Assumption: lower bounded policies (same as single agent)~~

use greedy exploration

Sample Complexity Results

Solve as a sequence of single-agent MDP and zero-sum matrix game

Policy mirror descent + stochastic FoRB

$$\mathcal{O}(\varepsilon^{-4}) \xleftarrow{\varepsilon\text{-Nash eq.}}$$

Better dependence on $|S|, |A|, |B|, \gamma$ than SOTA

~~Assumption: lower bounded policies (same as single agent)~~

use greedy exploration