Diffusion Models for Adversarial Purification

Weili Nie¹, Brandon Guo², Yujia Huang², Chaowei Xiao^{1,3}, Arash Vahdat¹, Anima Anandkumar²

¹NVIDIA, ²Caltech, ³ASU

Motivation

Adversarial training or adversarial purification?

- Adversarial training: It trains classifiers on adversarial examples
 - Defense against seen threats
 - Defense against unseen threats
 - Training complexity
- Adversarial purification: It uses generative models to purify adversarial perturbations
 - Defense against seen threats
 - Defense against unseen threats
 - Training complexity* U

Can we overcome the shortcomings of adversarial purification with <u>a better generative prior</u>?

Motivation

Diffusion models have emerged as powerful generative models

Guided-Diffusion (Dhariwal & Nichol, 2021)

How should we use a diffusion model as the purification model for adversarial defense?

DiffPure (Diffusion Purification)

It uses the forward and reverse processes of pre-trained diffusion models to purify adversarial images

How to Evaluate DiffPure on Strong Adaptive Attacks?

We use adjoint method to compute full gradients of reverse SDE for adaptive attacks

- Challenge
 - Strong adaptive attacks (e.g. AutoAttack) require computing full gradients of DiffPure
 - Naively backpropagating through SDE scales poorly in memory
- Our solution
 - Use *adjoint method* to compute gradient of SDE
 - Convert gradient computation to solving an augmented SDE in <u>Eq. (6)</u>

Proposition 3.3. For the SDE in Eq. (4), the augmented SDE that computes the gradient $\frac{\partial \mathcal{L}}{\partial \boldsymbol{x}(t^*)}$ of backpropagating through it is given by

$$\begin{pmatrix} \boldsymbol{x}(t^*) \\ \frac{\partial \mathcal{L}}{\partial \boldsymbol{x}(t^*)} \end{pmatrix} = sdeint \begin{pmatrix} \left(\hat{\boldsymbol{x}}(0) \\ \frac{\partial \mathcal{L}}{\partial \hat{\boldsymbol{x}}(0)} \right), \tilde{\boldsymbol{f}}, \tilde{\boldsymbol{y}}, \tilde{\boldsymbol{w}}, 0, t^* \end{pmatrix}$$
(6)

where $\frac{\partial \mathcal{L}}{\partial \hat{x}(0)}$ is the gradient of the objective \mathcal{L} w.r.t. the output $\hat{x}(0)$ of the SDE in Eq. (4), and

$$([\boldsymbol{x};\boldsymbol{z}],t) = \begin{pmatrix} \boldsymbol{f}_{rev}(\boldsymbol{x},t) \\ \frac{\partial \boldsymbol{f}_{rev}(\boldsymbol{x},t)}{\partial \boldsymbol{x}} \boldsymbol{z} \end{pmatrix}$$
$$\tilde{\boldsymbol{g}}(t) = \begin{pmatrix} -g_{rev}(t)\boldsymbol{1}_d \\ \boldsymbol{0}_d \end{pmatrix}$$
$$\tilde{\boldsymbol{w}}(t) = \begin{pmatrix} -\boldsymbol{w}(1-t) \\ -\boldsymbol{w}(1-t) \end{pmatrix}$$

with $\mathbf{1}_d$ and $\mathbf{0}_d$ representing the *d*-dimensional vectors of all ones and all zeros, respectively.

Implemented in the "TorchSDE" library (Li et al., 2020)

Comparison with SOTA in RobustBench Benchmark: CIFAR-10

DiffPure has absolute improvements of up to +5% in robust accuracy

Method	Extra Data	Standard Acc	Robust Acc
WideResNet-28-10			
(Zhang et al., 2020)	1	89.36	59.96
(Wu et al., 2020)	1	88.25	62.11
(Gowal et al., 2020)	1	89.48	62.70
(Wu et al., 2020)	×	85.36	59.18
(Rebuffi et al., 2021)	×	87.33	61.72
(Gowal et al., 2021)	×	87.50	65.24
Ours	×	$\textbf{89.02}{\pm}\textbf{0.21}$	70.64±0.39
WideResNet-70-16			
(Gowal et al., 2020)	1	91.10	66.02
(Rebuffi et al., 2021)	1	92.23	68.56
(Gowal et al., 2020)	×	85.29	59.57
(Rebuffi et al., 2021)	×	88.54	64.46
(Gowal et al., 2021)	X	88.74	66.60

Method	Extra Data	Standard Acc	Robust Acc
WideResNet-28-10			
(Augustin et al., 2020)*	1	92.23	77.93
(Rony et al., 2019)	X	89.05	66.41
(Ding et al., 2020)	×	88.02	67.77
(Wu et al., 2020)*	×	88.51	72.85
(Sehwag et al., 2021)*	×	90.31	75.39
(Rebuffi et al., 2021)	×	91.79	78.32
Ours	X	$91.03{\pm}0.35$	$\textbf{78.58}{\pm}\textbf{0.40}$
WideResNet-70-16			
(Gowal et al., 2020)	1	94.74	79.88
(Rebuffi et al., 2021)	1	95.74	81.44
(Gowal et al., 2020)	×	90.90	74.03
(Rebuffi et al., 2021)	×	92.41	80.86
Ours	X	92.68±0.56	$80.60{\pm}0.57$

AutoAttack Linf (eps=8/255)

AutoAttack L2 (eps=0.5)

Comparison with SOTA in RobustBench Benchmark: ImageNet

DiffPure has absolute improvements of up to +7% in robust accuracy

Method	Extra Data	Standard Acc	Robust Acc	
ResNet-50				
(Engstrom et al., 2019)	×	62.56	31.06	
(Wong et al., 2020)	×	55.62	26.95	
(Salman et al., 2020)	×	64.02	37.89	
(Bai et al., 2021) [†]	×	67.38	35.51	
Ours	×	67.79±0.43	$40.93{\pm}1.96$	
WideResNet-50-2				
(Salman et al., 2020)	×	68.46	39.25	
Ours	×	$71.16 {\pm} 0.75$	$\textbf{44.39}{\pm 0.95}$	
DeiT-S				
(Bai et al., 2021) [†]	×	66.50	35.50	
Ours	×	73.63±0.62	$43.18{\pm}1.27$	

AutoAttack Linf (eps=4/255)

Defense Against Unseen Threats: CIFAR-10

DiffPure has absolute improvements of up to +36% in robust accuracy

Method	Standard Acc	Robust Acc			
Wiethod	Standard Acc	ℓ_∞	ℓ_2	StAdv	
Adv. Training with ℓ_{∞} (Laidlaw et al., 2021)	86.8	49.0	19.2	4.8	
Adv. Training with ℓ_2 (Laidlaw et al., 2021)	85.0	39.5	47.8	7.8	
Adv. Training with StAdv (Laidlaw et al., 2021)	86.2	0.1	0.2	53.9	
PAT-self (Laidlaw et al., 2021)	82.4	30.2	34.9	46.4	
ADV. CRAIG (Dolatabadi et al., 2021)	83.2	40.0	33.9	49.6	
ADV. GRADMATCH (Dolatabadi et al., 2021)	83.1	39.2	34.1	48.9	
Ours	88.2±0.8	70.0±1.2	70.9±0.6	55.0±0.7	

AutoAttack Linf (eps=8/255), AutoAttack L2 (eps=0.5) and StAdv (eps=0.05)

Comparison with Other Purification Methods

DiffPure has absolute improvements of +15% on CelebA-HQ and +11% on CIFAR-10 in robust accuracy

(a) CelebA-HQ			(b) CIFAR-10				
Method	Purification	Standard Acc	Robust Acc	Method	Purification	Standard Acc	Robust Acc
(Vahdat & Kautz, 2020)	VAE	99.43	0.00	(Song et al., 2018)	Gibbs Update	95.00	9.00
(Karras et al., 2020)	GAN+Opt	97.76	10.80	(Yang et al., 2019)	Mask+Recon.	94.00	15.00
(Chai et al., 2021)	GAN+ENC+Opt	99.37	26.37	(Hill et al., 2021)	EBM+LD	84.12	54.90
(Richardson et al., 2021)	GAN+ENC	93.95	75.00	(Yoon et al., 2021)	DSM+LD*	86.14	70.01
Ours $(t^* = 0.4)$	Diffusion	93.87±0.18	89.47±1.18	Ours $(t^* = 0.075)$	Diffusion	91.03±0.35	77.43±0.19
Ours ($t^* = 0.5$)	Diffusion	93.77 ± 0.30	90.63±1.10	Ours $(t^* = 0.1)$	Diffusion	$89.02 {\pm} 0.21$	$\textbf{81.40{\pm}0.16}$

BPDA+EOT Linf (eps=16/255 for CelebA-HQ, eps=8/255 for CIFAR-10)

Qualitative Results of DiffPure on CelebA-HQ

DiffPure removes adversarial perturbations on different attribute classifiers

Smiling